Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = waste-free formwork

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 12341 KB  
Review
Toolpath-Driven Surface Articulation for Wax Formwork Technology in the Production of Thin-Shell, Robotic, CO2-Reduced Shotcrete Elements
by Sven Jonischkies, Jeldrik Mainka, Harald Kloft, Bhavatarini Kumaravel, Asbjørn Søndergaard, Falk Martin and Norman Hack
Buildings 2026, 16(2), 257; https://doi.org/10.3390/buildings16020257 - 7 Jan 2026
Viewed by 6
Abstract
This study introduces a digital fabrication process for producing recyclable, closed-loop wax formwork for architectural concrete applications with visually rich surface articulation while drastically reducing formwork milling time. As such, this paper presents (a) a circular large-scale production method for wax blocks via [...] Read more.
This study introduces a digital fabrication process for producing recyclable, closed-loop wax formwork for architectural concrete applications with visually rich surface articulation while drastically reducing formwork milling time. As such, this paper presents (a) a circular large-scale production method for wax blocks via a single casting process; (b) four machine-time-optimized surface articulation strategies through CNC toolpath-driven design; (c) the investigation of different coating systems to improve architectural concrete surface quality and to ease demolding; and (d) the integration of robotic concrete shotcreting using a low-CO2 fine-grain concrete. For the first time, wax formwork technology, characterized by its waste-free approach, has been combined with robotic shotcreting in a digital and automated workflow to fabricate fiber-reinforced, geometrically complex thin-shell concrete elements with distinct surface articulations. To evaluate the process, a series of four thin-shell concrete elements was produced, employing four distinct parametric toolpath-driven designs: linear surface articulation, crossed surface articulation, topology-adapted curve flow surface articulation, and robotic drill topology-adapted surface articulation. Results revealed a possible reduction in milling time of between 77% and 94% compared to traditional milling methods. The optimized toolpaths and design-driven milling strategies achieved a high degree of visual richness, showcasing the potential of this integrated approach for the production of high-quality architectural concrete elements. Full article
(This article belongs to the Special Issue Robotics, Automation and Digitization in Construction)
Show Figures

Figure 1

17 pages, 34849 KB  
Article
Sustainable Use of Waste Polypropylene Fibres to Enhance the Abrasion and Skid Resistance of Two-Stage Concrete
by Rayed Alyousef
Sustainability 2021, 13(9), 5200; https://doi.org/10.3390/su13095200 - 6 May 2021
Cited by 7 | Viewed by 2979
Abstract
Two-stage concrete (TSC), also known as prepacked aggregate concrete (PAC), differs from traditional concrete in terms of site application and manufacturing process. Although this type of concrete is not a replacement for conventional concrete applications, it is an ideal option for unusual and [...] Read more.
Two-stage concrete (TSC), also known as prepacked aggregate concrete (PAC), differs from traditional concrete in terms of site application and manufacturing process. Although this type of concrete is not a replacement for conventional concrete applications, it is an ideal option for unusual and difficult placing conditions, especially for repairing existing concrete structures. In other words, this type of concrete is a newly developed concrete and made by placing and packing coarse aggregates and fibres in a designed formwork, then injecting a cement grout mixture into the free spaces between the aggregate particles using gravity or a pump device. For the mentioned system and others, concrete components used as floors or pavements must have an adequate degree of roughness during service life when exposed to skid and abrasion. Thus, this research work introduced a new concrete method (prepacked aggregates fibre-reinforced concrete—PAFRC) with high abrasion and skid resistance reinforced with waste polypropylene (PP) fibres from the carpet industry. The effects of PP fibres at 0–1% dosages on the mechanical properties, abrasion resistance, and skid resistance of PAFRC mixes were studied. The results revealed that the addition of PP fibres reduces the compressive strength of concrete mixtures. Nonetheless, the presence of PP fibres results in PAFRC mixes having higher tensile strength, abrasion resistance, and skid resistance than plain concrete. It was detected that in both grouting methods (gravity and pump), with the addition of PP fibre up to a specific dosage, the resistance against abrasion and skid was increased by about 26% compared to plain PAC mix. Additionally, the outcomes indicated that PAFRC is a promising material for applications such as pavements with high abrasion and skid resistance. Full article
(This article belongs to the Special Issue Towards Advanced Sustainable Recycled Materials and Technology)
Show Figures

Figure 1

Back to TopTop