Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = voltage multiplier (VM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3049 KB  
Article
Non-Isolated Ultra-High Step-Up DC-DC Converter Topology Using Coupled-Inductor-Based Inverting Buck-Boost and Voltage Multipliers
by Van-Tinh Duong, Zeeshan Waheed and Woojin Choi
Electronics 2025, 14(13), 2519; https://doi.org/10.3390/electronics14132519 - 20 Jun 2025
Cited by 1 | Viewed by 1007
Abstract
This paper introduces a non-isolated ultra-high voltage gain topology using the combination of the coupled-inductor-based inverting buck-boost converter (IBB) and voltage multiplier (VM) structure. In the proposed converter, an ultra-high step-up voltage gain can be achieved with a small duty cycle thanks to [...] Read more.
This paper introduces a non-isolated ultra-high voltage gain topology using the combination of the coupled-inductor-based inverting buck-boost converter (IBB) and voltage multiplier (VM) structure. In the proposed converter, an ultra-high step-up voltage gain can be achieved with a small duty cycle thanks to a coupled inductor and VMs. The voltage stress and the losses of the switches in the proposed converter are even less than other conventional topologies. Unlike other coupled-inductor topologies, a large voltage spike caused by the leakage inductance of the coupled inductor is smoothed by the capacitor in the voltage multiplier. In addition, zero-voltage switching (ZVS) turn-on for the switches and zero-current switching (ZCS) turn-off for the diodes can be achieved with the energy stored in the leakage inductance. A 360 W (40 V/380 V) prototype converter is implemented to prove the advantages of the proposed converter, with a maximum efficiency of 98.4%. Full article
(This article belongs to the Special Issue Advanced DC-DC Converter Topology Design, Control, Application)
Show Figures

Figure 1

17 pages, 6316 KB  
Article
A Dual-Mode Hybrid Step-Up Converter with Stable Output for Vibration Energy Harvesting
by Jiayong Yuan, Han Peng, Jiahua Chen, Hanyi Sun and Chunyan Zang
Energies 2022, 15(13), 4643; https://doi.org/10.3390/en15134643 - 24 Jun 2022
Cited by 4 | Viewed by 2254
Abstract
A dual-mode hybrid step-up circuit for electromagnetic energy harvesting (EVEH) is proposed in this paper, with the merits of continuous output power delivery with and without external vibrations, simple architecture, and no need for extra circuits to start up. The proposed hybrid converter [...] Read more.
A dual-mode hybrid step-up circuit for electromagnetic energy harvesting (EVEH) is proposed in this paper, with the merits of continuous output power delivery with and without external vibrations, simple architecture, and no need for extra circuits to start up. The proposed hybrid converter combines a multi-stage voltage multiplier (VM) with a boost regulator, which utilizes the winding inductance of the electromagnetic energy harvester as a boost inductor. With external vibration, the proposed circuit powers the load and stores energy in the super-capacitor through VM mode. When external vibration disappears, it automatically switches to boost mode and powers the load using the energy stored in the supercapacitor. For hybrid mode operation, the number of VM stages is optimized considering the following three aspects: sufficient voltage gains when vibration is on, time durations to provide constant power when vibration is off for as long as possible, and low losses at VM stage. A GaN-based dual-mode hybrid converter is built to verify the output regulation capability with an in-house-designed electromagnetic energy harvester. The outputs of the hybrid circuit achieve 4.05 V and 1.64 mW at a 100-Hz external vibration frequency and an acceleration of 0.7 g. The peak efficiency of the proposed hybrid converter reaches 60.7%. When external vibration disappears, the circuit is able to maintain a stable output for 13 s with a super-capacitor of 0.1 F. Full article
Show Figures

Figure 1

27 pages, 5725 KB  
Article
Design and Development of Non-Isolated Modified SEPIC DC-DC Converter Topology for High-Step-Up Applications: Investigation and Hardware Implementation
by Manoharan Premkumar, Umashankar Subramaniam, Hassan Haes Alhelou and Pierluigi Siano
Energies 2020, 13(15), 3960; https://doi.org/10.3390/en13153960 - 1 Aug 2020
Cited by 34 | Viewed by 4887
Abstract
A new non-isolated modified SEPIC front-end dc-dc converter for the low power system is proposed in this paper, and this converter is the next level of the traditional SEPIC converter with additional devices, such as two diodes and splitting of the output capacitor [...] Read more.
A new non-isolated modified SEPIC front-end dc-dc converter for the low power system is proposed in this paper, and this converter is the next level of the traditional SEPIC converter with additional devices, such as two diodes and splitting of the output capacitor into two equal parts. The circuit topology proposed in this paper is formulated by combining the boost structure with the traditional SEPIC converter. Therefore, the proposed converter has the benefit of the SEPIC converter, such as continuous input current. The proposed circuit structure also improves the features, such as high voltage gain and high conversion efficiency. The converter comprises one MOSFET switch, one coupled inductor, three diodes, and two capacitors, including the output capacitor. The converter effectively recovers the leakage energy of the coupled inductor through the passive clamp circuit. The operation of the proposed converter is explained in continuous conduction mode (CCM) and discontinuous conduction mode (DCM). The required voltage gain of the converter can be acquired by adjusting the coupled inductor turn’s ratio along with the additional devices at less duty cycle of the switch. The simulation of the proposed converter under CCM is carried out, and an experimental prototype of 100 W, 25 V/200 V is made, and the experimental outcomes are presented to validate the theoretical discussions of the proposed converter. The operating performance of the proposed converter is compared with the converters discussed in the literature. The proposed converter can be extended by connecting voltage multiplier (VM) cell circuits to get the ultra-high voltage gain. Full article
(This article belongs to the Special Issue Smart Distribution Grid Technologies and Applications)
Show Figures

Graphical abstract

11 pages, 862 KB  
Article
Hybrid Solar-RF Energy Harvesting Systems for Electric Operated Wheelchairs
by Cuong V. Nguyen, Minh T. Nguyen, Toan V. Quyen, Anh M. Le, Antonino Masaracchia, Ha T. Nguyen, Huy P. Nguyen, Long D. Nguyen, Hoa T. Nguyen and Vinh Q. Nguyen
Electronics 2020, 9(5), 752; https://doi.org/10.3390/electronics9050752 - 2 May 2020
Cited by 13 | Viewed by 6881
Abstract
Over the decades, with the advancement of science and technology, wheelchairs have undergone remarkable changes, such as controlling an electrical wheelchair by using brain signals. However, existing electrical wheelchairs still need improvements in terms of energy management. This paper proposes an hybrid Solar-Radio [...] Read more.
Over the decades, with the advancement of science and technology, wheelchairs have undergone remarkable changes, such as controlling an electrical wheelchair by using brain signals. However, existing electrical wheelchairs still need improvements in terms of energy management. This paper proposes an hybrid Solar-Radio frequency (RF) harvesting system able to supply power for the continuous and effective operation of electrically powered wheelchairs. This system can simultaneously harvest power from RF and solar source that are both available in the surrounding environment. A maximum power point tracking (MPPT) and a boost converter are exclusively employed for the standalone solar system while the standalone RF system is equipped with a 9-stage voltage multiplier (VM). The voltage level for the charging process is obtained by adding the output voltage of each source. In addition, a current booster and a stabilizer are used to reach the required level of current and pin the charging voltage to a stable level, respectively. Simulation results show how the hybrid system is better and more stable when the boost current and stabilizer are used in the charging system. Moreover, we also provide some analytic results to prove the advantages of this system. Full article
(This article belongs to the Special Issue RF Energy Harvesting and Wireless Power Transfer)
Show Figures

Figure 1

17 pages, 9497 KB  
Article
LLC Resonant Voltage Multiplier-Based Differential Power Processing Converter Using Voltage Divider with Reduced Voltage Stress for Series-Connected Photovoltaic Panels under Partial Shading
by Masatoshi Uno, Toru Nakane and Toshiki Shinohara
Electronics 2019, 8(10), 1193; https://doi.org/10.3390/electronics8101193 - 20 Oct 2019
Cited by 6 | Viewed by 4857
Abstract
Partial shading on photovoltaic (PV) strings consisting of multiple panels connected in series is known to trigger severe issues, such as reduced energy yield and the occurrence of multiple power point maxima. Various kinds of differential power processing (DPP) converters have been proposed [...] Read more.
Partial shading on photovoltaic (PV) strings consisting of multiple panels connected in series is known to trigger severe issues, such as reduced energy yield and the occurrence of multiple power point maxima. Various kinds of differential power processing (DPP) converters have been proposed and developed to prevent partial shading issues. Voltage stresses of switches and capacitors in conventional DPP converters, however, are prone to soar with the number of panels connected in series, likely resulting in impaired converter performance and increased circuit volume. This paper proposes a DPP converter using an LLC resonant voltage multiplier (VM) with a voltage divider (VD) to reduce voltage stresses of switches and capacitors. The VD can be arbitrarily extended by adding switches and capacitors, and the voltage stresses can be further reduced by extending the VD. Experimental verification tests for four PV panels connected in series were performed emulating partial shading conditions in a laboratory and outdoor. The results demonstrated the proposed DPP converter successfully precluded the negative impacts of partial shading with mitigating the voltage stress issues. Full article
(This article belongs to the Special Issue Emerging Technologies for Photovoltaic Solar Energy)
Show Figures

Figure 1

17 pages, 8507 KB  
Article
A Generic Control-Oriented Model Order Reduction Approach for High Step-Up DC/DC Converters Based on Voltage Multiplier
by Binxin Zhu, Qingdian Zeng, Mahinda Vilathgamuwa, Yang Li and Yao Chen
Energies 2019, 12(10), 1971; https://doi.org/10.3390/en12101971 - 23 May 2019
Cited by 8 | Viewed by 3793
Abstract
The modeling and control system design of high step-up DC/DC converters based on voltage multipliers (VMs) are difficult, due to the various circuit topologies and the presence of large number of capacitors in VMs. This paper proposes a generic approach to reduce the [...] Read more.
The modeling and control system design of high step-up DC/DC converters based on voltage multipliers (VMs) are difficult, due to the various circuit topologies and the presence of large number of capacitors in VMs. This paper proposes a generic approach to reduce the model order of such converters by replacing the VM capacitors with voltage sources controlled by the output voltage of the converter. Theoretical analysis and simulation results show that the derived models can accurately represent the low frequency response of the converter which is valuable for obtaining a small-signal AC model for control system design. The detailed modeling and controller design process are demonstrated for the converter, and the obtained simulation results are verified experimentally on a 400 W prototype. Full article
(This article belongs to the Special Issue Control in Power Electronics)
Show Figures

Figure 1

Back to TopTop