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Abstract: Over the decades, with the advancement of science and technology, wheelchairs have
undergone remarkable changes, such as controlling an electrical wheelchair by using brain signals.
However, existing electrical wheelchairs still need improvements in terms of energy management.
This paper proposes an hybrid Solar-Radio frequency (RF) harvesting system able to supply power
for the continuous and effective operation of electrically powered wheelchairs. This system can
simultaneously harvest power from RF and solar source that are both available in the surrounding
environment. A maximum power point tracking (MPPT) and a boost converter are exclusively
employed for the standalone solar system while the standalone RF system is equipped with a 9-stage
voltage multiplier (VM). The voltage level for the charging process is obtained by adding the output
voltage of each source. In addition, a current booster and a stabilizer are used to reach the required
level of current and pin the charging voltage to a stable level, respectively. Simulation results show
how the hybrid system is better and more stable when the boost current and stabilizer are used in
the charging system. Moreover, we also provide some analytic results to prove the advantages of
this system.

Keywords: solar cells; RF energy harvesting; hybrid energy harvesting; rechargeable batteries;
electric wheelchairs

1. Introduction

Wheelchairs represent one of the most common assistive devices that permit to improve the quality
of life of people with limited mobility problems, such as disabled persons and elderly, by offering them
autonomous mobility opportunities. The first wheelchair model, also known as invalid’s chair, was the
one made for Philip II of Spain at the end of 16th century [1]. From that starting point, the concept
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of this assistive device started to evolve trying to address needs and circumstances of their users
from time to time [2]. According to their propulsion system, wheelchairs can be categorized in two
main classes: (i) manually powered wheelchair (MW), and (ii) electrically powered wheelchair (EW).
The MW is the most commonly seen wheelchair in the hospital. However, this is not the optimal
choice for elderly persons and both legs and arm disabled persons, which could not have the sufficient
strength to propel themselves. On the other hand, EWs offer a completely different approach, enabling
users to control and navigate their wheelchair independently using a traditional joystick or alternative
control systems, such as head joysticks, chin joysticks, sip-n-puff, and thought control [3–7]. Therefore,
EW can be labelled as the best option at an affordable price.

Basically, the main components of an EW are: (i) a chassis, which can be foldable and can have
different abilities, such as stair-climbing or standing positions, (ii) a controller, which is the interface
between human and machine, (iii) a seating system with footrests, lateral supports and backrests,
which typically include cushions that use foam, gel, or air to prevent pressure sores, and (iv) a battery
unit used to provide energy to the navigation and locomotion system [8]. Although several studies
have been conducted to propose innovative solutions to improve ergonomics of chassis and facility of
controlling and operating system, addressing different users needs [9–18], the autonomy of EW’s users
results still strongly dependent on battery lifetime. Indeed, depending on the operating environment
and the weight of users, a frequent recharging process for EW’s battery may be necessary [19,20],
limiting the travelling distance especially into outdoor environments. Moreover, increasing the size
of battery embedded into EWs does not represent an optimal solution since to an increase of the size
correspond an increase of the weight, which will hinder the movement of the EW.

An alternative solution to the increase of battery size is represented by the design of an hybrid
EW with different energy sources. Authors in [21] proposed a model of electrical robotic wheelchair
with three energy sources, i.e., a battery, a photovoltaic solar cell, and a hydrogen f cell. Then, when
conditions allow for abundant sunlight, the photovoltaic solar cell is used. When solar energy is not
available, the fuel cell is used. Finally, when the hydrogen is depleted, the battery is used. A similar
approach has been proposed in [22] where the battery is removed and only photovoltaic and hydrogen
cell fuel were used. Then, these approaches enable users to enjoy more independence, especially when
they are outdoors. However, even if the sunlight represents an infinite source of energy, these hybrid
EWs remains still strongly dependent on a recharging procedure for either battery or hydrogen fuel cell.

Recently, the concept of wireless power transfer (WPT) represents an emerging technology able to
provide power to battery constrained devices, such as unmanned aerial vehicles (UAVs) or into wireless
sensor networks (WSNs), where the use of electric cables results infeasible [23,24]. Then, a WPT-based
approach is able to avoid the dependence of having a charging socket. From these perspectives,
this paper proposes a new energy solution for EW’s battery charging by combining two sources of
infinite energy as solar and RF energy. This mechanism allows EW to charge the battery itself by
converting energy from the surrounding environment into power, especially in outdoor environment.
In particular, this paper propose an hybrid Solar-Radio frequency harvesting system to supply power
for the continuous and effective operating of an electric operated wheelchair.

The rest of the paper is organized as follows. An overview of the proposed system will be
described in Section 2. Section 3 describes and discusses the theoretical basis of both standalone solar
and RF-based charging system, including respective system diagrams. Section 4 introduce the whole
proposed EW’s charging solution, presenting and discussing the simulation results subsequently in
Section 5. Finally, conclusions and future directions will be presented in Section 6.

2. System Model

As outlined before, the power supply for EW are batteries that are charged through the electrical
grid either at home or using a dedicated socket. To minimize this dependence and increase flexibility
for charging, our system model consists of an hybrid Solar-RF energy harvesting system able to
charge EW’s batteries. The most used source of energy for harvesting is solar energy. It is renewable



Electronics 2020, 9, 752 3 of 11

energy causing pollution-free environment and safer than using traditional electricity. In addition,
due to the high life of solar panels, no high level of maintenance is required. In contrast to solar
energy that operates during the day, RF energy can be harvested even at night. Indeed, presently,
telecommunications technologies are developing rapidly in order to meet smart cities requirements.
This leads to the existence of many radio frequencies from base stations, mobile phones, WIFI signals.
Then, using energy source from radio frequencies represents a good option. Hence, the combination of
RF and solar energy can certainly support each other to create a stable, continuous and efficient source
of energy for EW’s batteries [25].

The whole system model for the operated wheelchair is illustrated in Figure 1. The solar panels,
attached to the top of the wheelchair, are not only used to harvest energy from sunlight but also protect
the user from rainy and sunny weather conditions, acting then as a shielding umbrella. In addition,
an antenna system is installed in order to harvest RF energy from the surrounding source. The output
of these energy sources will be handled through a stabilizer and a current boost system to provide the
proper levels of current and voltage to battery. In this paper, we suppose that the EW is equipped with
350 W motor power that takes energy from a Li-polymer 22.8 V 10 C 6S1P 32,000 mAh battery [26],
which has a 22.8 V discharge voltage and a maximum discharge current of 320 A.

Battery

Solar energy

Stabilizer and

Boost current

Hybrid solar-RF energy

RX

TX

TXTX

Figure 1. The block diagram of model system for brain operated wheelchair.

Since the charging process is strongly dependent on the charging voltage and current, the output
values from the hybrid system cannot be directly used to supply the load, i.e., the battery. Indeed,
the charging voltage requires being approximately the rated voltage of the battery while the charging
current directly impacts the charging time. Then, they affect significantly the charging process.
Our system model uses a stabilizer and a boost current system to modify outputs of the hybrid system
before charging the wheelchair’s battery.

3. The Hybrid Solar-Rf Harvesting Energy System

As illustrated in Figure 2, the proposed system for EW’s battery charging can be divided in two
main modules, i.e., solar module and RF module, which will be discussed in detail in Sections 3.1
and 3.2, respectively .
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Figure 2. The block diagram of hybrid solar-RF energy system.

3.1. Solar Energy Module

The solar system comprises three main parts such as solar panels, MPPT controller, and boost
converter. Solar panels are used to extract power from the sunlight by using semiconducting materials.
The MPPT controller improves the conversion efficiency and prevents overcharging for battery and
unnecessary discharge scenarios. The boost converter steps up the low DC harvesting voltage level to
a high DC voltage level in order to meet battery power demand.

Usually, the conversion efficiency from solar arrays into electric energy is low and not suitable
for the specific battery charging purpose. To achieve higher efficiency, the MPPT is installed in the
solar system. As illustrated in Figure 3, the MPPT tracks the highest power point for the photovoltaic
panels, providing the most optimal amount of energy from the solar array to the battery bank by
accommodating for differences in voltages between the solar array and the battery bank. The MPPT
can monitor the capacity of the batteries and then match the necessary voltage needed from the solar
array. Based on potential difference theory, the higher voltage flows to the lower voltage between
two points in an electric circuit, which in this paper is the difference between the solar array and the
battery bank. During sunny condition, harvesting voltage from the solar panels transfers into the
battery. However, in the opposite cases, the power of the battery could be discharged back to the solar
arrays. In this case, the MPPT works as a switch, switching off when the solar voltage is lower than the
battery voltage. The MPPT is able to tackle this issue by preventing unnecessarily discharging voltage
scenario. Moreover, the MPPT also prevents the overcharging by regulating the amount of the amps
and current that comes from solar panels to the battery bank.

Voltage (V)

PMPPT

MPPT

0

P
o
w

er
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W
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t 
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)

I-V curve

P-V curve

Figure 3. Characteristic curves of a typical PV module.
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The DC-DC boost converter is used to step up a lower DC voltage, generated by solar panels, to
higher DC voltage demanded by the wheelchair’s battery. Figure 4 depicts the working principle of
the boost converter. When the mosfet transistor is ON (Figure 4a), the current from the source only
flows through the inductor and the mosfet, and is isolated with the load by the reverse bias of the
diode, so the inductor store whole input source during this period. During the OFF state of the switch
(Figure 4b), the input source flows through the inductor and the diode to the load. Then, the output
voltage (VO) of DC-DC boost converter is much greater than the input voltage (VS). Equation (1) shows
the relationship between the output voltage and the source [27]:

VO = VL + VS (1)

where VO is the output voltage of the boost converter, VL is the inductor voltage storing during the
ON state of mosfet, and VS is the harvesting voltage from the solar arrays. Equation (2) expresses the
relationship between the ON and OFF modes of the mosfet switch, where Don is the ON percentage
time of the mosfet transistor and Do f f is the OFF percentage of time of the transistor.

Do f f = 1 − Don (2)

On the other side, Equation (3) shows the direct affect of the ON and OFF time of the mosfet
transistor to the output voltage, where Vs is the source voltage and VO is the output voltage of the
boost converter [28].

VO =
VS

Do f f
(3)

C

D

Q
RL

L

)(tVL

SV outV

(a) MOSFET ON

C

D

Q
RL

L

)(tVL

SV outV

(b) MOSFET OFF

Figure 4. The MOSFET states of the boost converter.

Then, by using the boost converter the output values are able to step up to higher levels. Details
about the passive elements used in the boost converter and the dimension of the solar panel are
reported in Table 1.

Table 1. The information of solar panel and passive elements for the boost converter.

Parameters Solar Panel Inductor Mosfet Capacitor Resistor Diode

Value 121.7 × 53.3 × 0.2 cm − 1.8 kg 3 mH IRF540N 100 µF 6.6 Ω 1N4007

However, even if it is higher than the input source, the output voltage of such boost converter can
fluctuate and then may be not suitable for charging the battery.

3.2. Radio Frequency Energy

As illustrated in Figure 5, the RF harvesting energy circuit comprises a receiving antenna,
a matching circuit and a rectifier circuit .
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V_OUT

Antenna Matching circuit Rectifier circuit

Figure 5. The principle of harvesting RF energy system.

The antenna harvest energy from electromagnetic waves, converting it into electrical energy.
Depending on their designs, antennas can capture different frequency ranges in the environment.
The popular RF bands are TV broadcast (500–700 MHz), mobile phones (900 MHz), local area
networks (2.4–5.8 GHz), Wi-Fi signals (5 GHz), satellite stations (1–40 GHz), radar (5 MHZ–130 GHz).
The amount of power captured by a generic receiving antenna can be expressed as [29]:

Pantenna = G × Lc × Pt × Gt(
λ

4πd
) (4)

where Pantenna is the output power at the antenna, G is the receiving gain, Lc is the loss factor, Pt is the
transmitting power, Gt the transmitting gain, λ is the wavelength, d is the distance between transmitter
and the antenna. To improve the transferring performance between the antenna and the rectifier
circuit (voltage multiplier), the RF harvesting system must employ a matching circuit which consists of
one coil and one capacitor. The matching circuit matches antenna’s impedance with proper impedance
of the voltage multiplier (VM) enhancing transmission efficiency. The VM is a multi-stage circuit that
includes two diodes and two capacitors in each stage. It is used to convert the AC harvesting voltage
of the antenna to the DC voltage, boosting it to higher values. With the same input voltage, the more
numbers of the VM’s stages is employed, the higher output voltage can be approached. In particular,
output voltage for an N-stage with the ideal voltage multiplier is [30]:

UOUT = 4 × N × UIN (5)

where UOUT is the output voltage of the VM, N is the number stages, and UIN is the input voltage
of the voltage multiplier. In Figure 6, we show and compare some different stage numbers of VM.
Depending on both the output value and the settling time, in this paper we suppose to use the nine
stages VM to meet power for hybrid system. The simulating model of the VM to amplify the RF
harvesting power is illustrated in Figure 7.

Table 2 contains some information of the common RF source and also detail about some passive
elements of the employed VM system.

Table 2. The information of RF harvesting energy system.

Parameter
RF Signal

Inductor Capacitor Diode
Frequency Amplitude

Value 900 MHz,
2.4 GHz, 5.8 GHz 0.2 V 1 mH

C = 0.22 µF;
C1 to C18 = 100 µF 10DQ015
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Figure 7. The scheme of the stand-alone harvesting RF energy.

4. Charging System

Output values of the hybrid energy system need to achieve suitable levels of both voltage and
current to effectively charge the wheelchair’s Li-polymer 6S1P battery. The output voltage must get
approximately 22.8 V to satisfy input requirements of the battery. The voltage generated by the solar
and RF harvesting systems are stepped up by the boost converter and VM, respectively. However,
these values result to fluctuate. On the other side, the charging time for EW’s battery is [31]:

Time =
Qbattery

I
(6)

where Time is the charging time to fully charge for the battery in hours, Qbattery is the capacity of
the battery in Ampere hour (Ah), and I is the charging current in Ampere (A). Since the level of
current provided by the hybrid system result to be low, this will strongly impacts on the charging time.
With these perspectives, in order to address the aforementioned voltage-current issues we suppose to
use the voltage-current stabilizer illustrated in Figure 8. Then, using this complete charging system,
the supplying voltage will be suitable to the battery voltage, and the higher reached current reduces
the charging time.
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Figure 8. The charging system.

5. Simulations and Results

In this section, we simulate separately three scenarios, i.e., solar energy harvesting, RF energy
harvesting, and hybrid solar-RF energy harvesting. For each scenario levels of harvested voltage and
current will be provided.

5.1. Stand-Alone Harvesting Solar Energy

The solar panels are attached to top of the wheelchair, so we choose the panels which have
dimensions: 121.7 × 53.3 × 0.2 cm and 1.8 kg. With this solar area, the power able to extract from panels
is 10 V. As mentioned in Section 3.1, the harvesting energy system is equipped with MPPT method and
DC-DC boost converter, which permits to harvest the highest power from the sunlight. The output
values of voltage and current from the boost converter are illustrated in Figure 9a,b, respectively.
From these figures, one can notice how the usage of the boost converter permits to step up the voltage
value to 25.202 V with a level of provided current around 3.818 A. However, supposing that an
32,000 mAh 6S1P battery is employed, the current level is not suitable for charging it. Moreover, as
mentioned before, values of current and voltage are fluctuating and then not good for charging battery.
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Figure 9. DC output values of the harvesting solar energy.

5.2. Stand-Alone Harvesting RF Energy

Nine stages of VM are employed to harvest energy from RF signals. DC output values of the RF
system are illustrated in Figure 10. As for the solar systems, the output voltage is at the desired output
value. However, using the VM voltage and current outputs result more stable. Then, the harvesting
RF system is more continuous than the solar system, but these values are not suitable to directly meet
power requirements for the charging procedure.
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Figure 10. DC output values of the harvesting RF energy.

5.3. Hybrid Solar-RF Harvesting Energy

From each output of the stand-alone systems, we observed that the output of each source is not
able to reach the charging requirements. The hybrid method for harvesting energy from the two
sources will pass through the stabilizer and boost current to increase the current and pin the voltage to
a suitable value for the battery’s initial requirements. The simulation results are shown in Figure 11.
From this figure one can note how the proposed hybrid system is able to reach a 16.0 A current and the
voltage is pinned at 24 V. This value of voltage fully meets the needs of the battery and the current of
16.0 A greatly improves battery charging time according to Equation (6).
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Figure 11. DC outputs of stabilizer and boost current system.

The current reaches a stable threshold of 16.0 A after a response time of about 30 s. This time is
acceptable because the system does not have too strict requirements in real time, and wheelchairs do
not directly use the power of output of the hybrid system that is used indirectly via battery. We calculate
that the estimated time to fully charge the battery is 2 h.

6. Conclusions and Future Work

This paper proposes a hybrid RF and solar power system able to meet EW’s battery charging
requirements, providing a charging current of 16A and a voltage of 24 V. Then, this charging system,
in addition to reducing battery charging time, permits improving the travel of EW’s users.

Future directions of this work can be identified in the investigation and definition of
methodologies aimed to improve both harvesting energy module and charging module. For example,
the antenna of RF module can be optimized to properly capture high densities of frequency spectrum.
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In addition, since the MOSFET’s switch of the DC-DC boost converter is a significant factor that
determines the output voltage magnitude and directly causes the output fluctuation in the harvesting
solar system, intelligent algorithms can be defined to achieve desired results. Finally, the charging
system could be optimized in order to be dependent from the battery percentage, regulating the charge
voltage and current in order to enhance the charging efficiency of the battery.
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