Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = vitellogenin (Vtg)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1523 KiB  
Article
Multi- and Transgenerational Histological and Transcriptomic Outcomes of Developmental TCDD Exposure in Zebrafish (Danio rerio) Ovary
by Amelia Paquette, Emma Cavaneau, Alex Haimbaugh, Danielle N. Meyer, Camille Akemann, Nicole Dennis and Tracie R. Baker
Int. J. Mol. Sci. 2025, 26(14), 6839; https://doi.org/10.3390/ijms26146839 - 16 Jul 2025
Viewed by 390
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure has long been associated with reproductive dysfunction in males and females even at miniscule levels, which can persist across generations. Given the continued industrial use and detection of other aryl hydrocarbon receptor (AhR) agonists in the general population [...] Read more.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure has long been associated with reproductive dysfunction in males and females even at miniscule levels, which can persist across generations. Given the continued industrial use and detection of other aryl hydrocarbon receptor (AhR) agonists in the general population and the demonstrated heritable phenotypes of TCDD exposure, further work is justified to elucidate reproductive pathologies and minimize exposure risk. In females, multi- and transgenerational subfertility has been demonstrated in a zebrafish (Danio rerio) model exposed to 50 pg/mL TCDD once at 3 and 7 weeks post fertilization (wpf). We further characterize the histopathologic, hormonal and transcriptomic outcomes of the mature female zebrafish ovary following early-life TCDD exposure. Exposure was associated with significantly increased ovarian atresia in the F0 and F1, but not F2 generation. Other oocyte staging and vitellogenesis were unaffected in all generations. Exposed F0 females showed increased levels of whole-body triiodothyronine (T3) and 17β-estradiol (E2) levels, but not vitellogenin (Vtg), 11-ketotestosterone (11-KT), cortisol, thyroxine (T4), or testosterone (T). Ovarian transcriptomics were most dysregulated in the F2. Both F0 and F2, but not F1, showed changes in epigenetic-related gene expression. Rho signaling was the top pathway for both F0 and F2. Full article
(This article belongs to the Special Issue Molecular Research of Reproductive Toxicity)
Show Figures

Figure 1

13 pages, 1804 KiB  
Article
Estrogenic Effect of Various Plant Extracts on Eel (Anguilla japonica) Hepatocytes
by Jeong Hee Yoon, Ji Eun Ha and Joon Yeong Kwon
Molecules 2025, 30(13), 2781; https://doi.org/10.3390/molecules30132781 - 27 Jun 2025
Viewed by 275
Abstract
Estrogen plays some important roles in many physiological processes in animals. This hormone is used as a type of medication for humans and animals, including fish, but is associated with serious side effects and environmental persistence, which has led to a growing interest [...] Read more.
Estrogen plays some important roles in many physiological processes in animals. This hormone is used as a type of medication for humans and animals, including fish, but is associated with serious side effects and environmental persistence, which has led to a growing interest in phytoestrogens as an alternative. Phytoestrogens are compounds derived from plants that are structurally similar to estrogen and may exhibit similar behavior in the body. To date, no studies have investigated the activity of phytoestrogens in relation to the maturation of eels. In the present study, we investigated the effects of ten different plant extracts on vitellogenin (vtg) and estrogen receptor (esr1, esr2) gene expression in eel hepatocytes. As a result, Schisandra and Astragalus extracts induced higher levels of vtg mRNA expression compared to the other extracts. However, increased esr mRNA expression was observed only in the Schisandra and soybean extract-treated groups. The phytoestrogens known to be present in Schisandra and Astragalus were analyzed using HPLC. Schizandrin, gomisin A, and gomisin N were detected in Schisandra extract, and calycosin and formononetin were detected in Astragalus extract. We then examined whether these phytoestrogens could induce vtg mRNA expression in eel hepatocytes. As a result, gomisin N and formononetin significantly induced vtg mRNA expression. In conclusion, among the 10 plant extracts treated in this study, Schisandra and Astragalus extracts induced estrogenic activity in eel hepatocytes. These extracts were found to contain phytoestrogens, with gomisin N and formononetin identified as the primary active components responsible for the observed estrogenic activity in eel hepatocytes. Full article
Show Figures

Figure 1

24 pages, 5904 KiB  
Article
Ecotoxicological Effects of Polystyrene Particle Mix (20, 200, and 430 µm) on Cyprinus carpio
by Ştefania Gheorghe, Anca-Maria Pătraşcu, Catălina Stoica, Mihaela Balas and Laura Feodorov
Toxics 2025, 13(4), 246; https://doi.org/10.3390/toxics13040246 - 26 Mar 2025
Cited by 1 | Viewed by 2574
Abstract
Global consumption led to increased and persistent plastic pollution in aquatic environments, affecting aquatic biota. Polystyrene (PS) is a synthetic polymer and one of the most widely used plastics. This study aims to investigate the acute and chronic effects of PS microplastics on [...] Read more.
Global consumption led to increased and persistent plastic pollution in aquatic environments, affecting aquatic biota. Polystyrene (PS) is a synthetic polymer and one of the most widely used plastics. This study aims to investigate the acute and chronic effects of PS microplastics on Cyprinus carpio using an adapted OECD methodology. For the acute test, PS was tested in different particle sizes (20, 200, and 430 µm), each at concentrations of 0, 1, 10, and 100 mg PS/L. Mortality and clinical signs were monitored after 96 h of exposure. No acute effects were recorded. In the chronic test, a mix of PS particles of different sizes (20, 200, and 430 µm) at a total concentration of 1.2 mg PS/L was used for a 75-day fish exposure. Mortality, biometric parameters, physiological indices, and antioxidant enzyme activities, including catalase (CAT), glutathione reductase (GRed), glutathione S-transferase (GST), 7-ethoxyresorufin-O-deethylase (EROD), lipid peroxidation (MDA), hepatic enzymes (alanine aminotransferase—ALT and aspartate aminotransferase—AST), vitellogenin (VTG), and acetylcholinesterase (ACh), were assessed. Fish exposed to the PS mix exhibited a 40% change in hepatosomatic indices after 75 days. Additionally, the PS mix induced oxidative stress in fish organs. CAT activity increased fourfold in the intestine, GRed activity increased thirtyfold in the gonads, and GST activity doubled in the brain. GRed activity also increased in the gills but was not statistically significant compared to the control. Lipid peroxidation was observed in the kidney (twofold increase) and was also detected in the gills and intestine; however, these changes were not statistically significant. EROD activity increased by 15% compared to the control group, indicating an amplification of stress enzyme expression. The activity of hepatic enzymes ALT and AST increased nine to tenfold compared to the control. VTG activity increased by 47%, and ACh activity showed more than 80% inhibition in the brain and muscle. Furthermore, an overall amplification of protein expression in the intestine and liver was observed compared to the control group. Our study revealed the incidence and severity of PS microplastic effects on freshwater fish and emphasized the urgent need for prevention, monitoring, and mitigation measures to combat microplastic pollution. Full article
Show Figures

Figure 1

14 pages, 6326 KiB  
Article
Transcriptomic Responses of Gonadal Development to Photoperiod Regulation in Amur Minnow (Phoxinus lagowskii)
by Mingchao Zhang and Yingdong Li
Fishes 2025, 10(3), 137; https://doi.org/10.3390/fishes10030137 - 20 Mar 2025
Viewed by 394
Abstract
Photoperiod regulates reproductive physiology in many fishes, but its sex-specific molecular effects under artificial manipulation remain unclear, especially in cold-water species. In this study, we investigated whether photoperiod manipulation during the reproductive season could modulate the rate and efficiency of gonadal development in [...] Read more.
Photoperiod regulates reproductive physiology in many fishes, but its sex-specific molecular effects under artificial manipulation remain unclear, especially in cold-water species. In this study, we investigated whether photoperiod manipulation during the reproductive season could modulate the rate and efficiency of gonadal development in the Amur minnow (Phoxinus lagowskii). High-throughput RNA sequencing was used to analyze transcriptomic responses of gonadal tissues under three photoperiod regimes: natural light (12L:12D), continuous light (24L:0D), and continuous darkness (0L:24D) over a 9-week experimental period. Our results revealed distinct sex-specific gonadal responses to photoperiodic changes. In males, continuous light significantly promoted spermatogenesis by upregulating meiosis-related genes (REC114 and syp3) and steroid biosynthesis. In females, prolonged light exposure induced ovarian stress, evidenced by vitellogenin (Vtg3) upregulation and retinoic acid suppression, whereas continuous darkness promoted lipid storage via downregulation of gluconeogenesis (PC and Fbp2) and fatty acid oxidation (ACSL1a). Additionally, immune activation, marked by IL1RAPL1-A upregulation, was observed in all groups except continuous-light males, with females exhibiting broader immune pathway engagement. These findings provide novel insights into the regulatory mechanisms of photoperiod-induced gonadal development and highlight potential strategies for optimising photoperiod management in cold-water fish aquaculture. Full article
(This article belongs to the Special Issue Rhythms and Clocks in Aquatic Animals)
Show Figures

Figure 1

13 pages, 4606 KiB  
Article
Minimizing Stress in White Sharks: Non-Invasive Epidermal Biopsies for Isotopic and Vitellogenin Analyses
by Guia Consales, Tommaso Campani, Agata Di Noi, Marco Garofalo, Eduardo Di Marcantonio, Francesca Romana Reinero, Silvia Casini, Luigi Dallai, Emilio Sperone, Letizia Marsili and Primo Micarelli
Biology 2025, 14(2), 192; https://doi.org/10.3390/biology14020192 - 13 Feb 2025
Viewed by 1047
Abstract
The great white shark (Carcharodon carcharias), a keystone predator vital to marine ecosystem stability, is increasingly exposed to anthropogenic threats, including endocrine-disrupting chemicals (EDCs). This study highlights the use of non-invasive epidermal biopsies to assess physiological and ecological parameters in 28 [...] Read more.
The great white shark (Carcharodon carcharias), a keystone predator vital to marine ecosystem stability, is increasingly exposed to anthropogenic threats, including endocrine-disrupting chemicals (EDCs). This study highlights the use of non-invasive epidermal biopsies to assess physiological and ecological parameters in 28 live specimens sampled from the Dyer Island Nature Reserve, South Africa. Epidermal tissue was analyzed for vitellogenin (Vtg), a biomarker of estrogenic exposure, while dermal tissue was used for stable isotope analyses of carbon and nitrogen, essential for understanding the feeding habitat of white sharks. Vitellogenin, typically restricted to sexually mature females, was unexpectedly detected in males and immature females, indicating significant exposure to estrogenic pollutants. This finding raises concerns about the potential reproductive and population-level impacts on this vulnerable species. Stable isotope analyses confirmed that dermal tissue alone is sufficient for trophic studies, eliminating the need for deeper muscle sampling. By demonstrating that epidermal and dermal tissues provide critical data for both biomarkers and isotopic studies, this research supports the adoption of minimally invasive techniques. Shallower biopsies reduce stress on the animals, making this method a valuable tool for conservation research and management of C. carcharias. Full article
(This article belongs to the Special Issue The Future of Marine Megafauna)
Show Figures

Figure 1

16 pages, 2339 KiB  
Article
Decoding Vitellogenin Subtype Responses: A Molecular Approach to Biomarkers of Endocrine Disruption in Scatophagus argus
by Meiqin Wu, Jun Zhang, Di Wu, Amina S. Moss and Weilong Wang
Fishes 2025, 10(1), 15; https://doi.org/10.3390/fishes10010015 - 31 Dec 2024
Cited by 1 | Viewed by 786
Abstract
Vitellogenins (Vtgs) are key yolk precursor proteins in fish, serving as critical indicators of gonadal maturation in females and reliable biomarkers for detecting xeno-oestrogenic pollution, particularly through their expression in juveniles or males. The vtg gene family comprises multiple subtypes that are species-specific, [...] Read more.
Vitellogenins (Vtgs) are key yolk precursor proteins in fish, serving as critical indicators of gonadal maturation in females and reliable biomarkers for detecting xeno-oestrogenic pollution, particularly through their expression in juveniles or males. The vtg gene family comprises multiple subtypes that are species-specific, necessitating precise characterisation and quantification for effective use as biomarkers in studies on estrogenic endocrine-disrupting chemicals (EEDCs). In this study, we successfully cloned and characterised the full-length cDNAs of three vtg subtypes (vtgAa, vtgAb, and vtgC) from Scatophagus argus. Differential expression analysis revealed that vtgAb exhibited the highest responsiveness to 17α-ethynylestradiol (EE2) exposure, with a 3-fold increase in vivo at 10.0 μg/g EE2 and a 30-fold increase in vitro at 10−7 mol/L EE2. The expression patterns were dose- and time-dependent, with peak expression observed 72 h post-exposure. While in vivo assays indicated moderate upregulation, in vitro experiments demonstrated significantly higher expression, attributed to direct hepatocyte interaction with EE2. These findings confirm vtgAb as the most responsive subtype to oestrogen exposure in S. argus and highlight the species’ tolerance to EE2, as compared to more sensitive species like Danio rerio. This study shows the evolutionary conservation of vtg transcripts across teleost species and reinforces the importance of subtype-specific characterisation to advance their application as biomarkers for EEDCs, with significant implications for environmental monitoring and pollution regulation. Full article
Show Figures

Graphical abstract

17 pages, 2100 KiB  
Article
Effects of Different Levels of Antarctic Krill Oil on the Ovarian Development of Macrobrachium rosenbergii
by Xiaochuan Zheng, Jie Yang, Xin Liu, Cunxin Sun, Qunlan Zhou, Aimin Wang, Jianming Chen and Bo Liu
Animals 2024, 14(22), 3313; https://doi.org/10.3390/ani14223313 - 18 Nov 2024
Cited by 1 | Viewed by 1364
Abstract
Antarctic krill oil has been proven to be able to promote the ovarian development of crustaceans, but its optimal application dose and potential regulatory mechanism in Macrobrachium rosenbergii are still unclear. In this study, five isonitrogenous and isolipidic diets with gradient additions of [...] Read more.
Antarctic krill oil has been proven to be able to promote the ovarian development of crustaceans, but its optimal application dose and potential regulatory mechanism in Macrobrachium rosenbergii are still unclear. In this study, five isonitrogenous and isolipidic diets with gradient additions of Antarctic krill oil (0%, 1.5%, 3%, 4.5%, and 6%) were served exposed to 8 weeks of feeding. The results show that 3–4.5% Antarctic krill oil supplementation significantly increases the weight gain rate and specific growth rate of M. rosenbergii (p < 0.05). In addition, 3–4.5% Antarctic krill oil supplementation significantly increased the content of hemolymph vitellogenin (VTG) and the levels of reproductive hormones, including methyl farnesoate (MF), estradiol (E2), and progesterone (P4) (p < 0.05). The differences in ovarian index, oocyte volume, yolk granule deposition in oocytes, and the transcription levels of VTG genes in hepatopancreas and ovarian tissues demonstrated that the addition of Antarctic krill oil significantly promoted ovarian development and vitellogenesis, especially at the 4.5% addition level. In terms of molecular signaling, this study confirms that the retinol metabolic signaling pathway, MF signaling pathway, steroid hormone signaling pathway, and ecdysone signaling pathway, along with their specific molecules, such as Farnesoic acid-O-methyltransferase (FAMeT), retinoid x receptor (RXR), ecdysone receptor (EcR), and estrogen-related receptor (ERR), are involved in the regulation of the ovarian development of M. rosenbergii by adding Antarctic krill oil at appropriate doses. The findings indicate that the supplementation of 4.5% Antarctic krill oil in the diet is optimal for stimulating the secretion of reproductive hormones in female M. rosenbergii, thereby promoting vitellogenesis and ovarian development. Full article
(This article belongs to the Special Issue Advances in Aquaculture Nutrition for Sustainable Health Management)
Show Figures

Figure 1

17 pages, 1113 KiB  
Article
The Impact of Perfluorooctanoic Acid (PFOA) on the Mussel Mytilus galloprovincialis: A Multi-Biomarker Evaluation
by Sandra Copeto, Sara Ganço, Inês João Ferreira, Didier Sanchez, Maria João Nunes, Carla Motta, Marco Silva and Mário Diniz
Oceans 2024, 5(4), 857-873; https://doi.org/10.3390/oceans5040049 - 5 Nov 2024
Cited by 3 | Viewed by 2222
Abstract
Perfluorooctanoic acid (PFOA) has been widely studied due to its environmental persistence and bioaccumulation potential, raising concerns about its effects on aquatic life. This research evaluates the impact of PFOA on the antioxidant defenses and stress response systems of the mussel Mytilus galloprovincialis [...] Read more.
Perfluorooctanoic acid (PFOA) has been widely studied due to its environmental persistence and bioaccumulation potential, raising concerns about its effects on aquatic life. This research evaluates the impact of PFOA on the antioxidant defenses and stress response systems of the mussel Mytilus galloprovincialis. Mussels were exposed to three concentrations of PFOA (1, 10, and 100 µg·L−1) over 28 days. Several biomarkers, including glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), total antioxidant capacity (TAC), vitellogenin (VTG), ubiquitin (UBI), and caspase-3 (CASP) were analyzed. The results suggest stress responses, particularly in animals exposed to higher concentrations, as shown by GST and SOD activities which increased according to PFOA concentrations. Additionally, oxidative stress markers such as MDA and CAT showed variable responses depending on the exposure concentration tested. This study underscores the need for further investigation into the effects of PFOA on mollusks but also the need to unveil gender-specific responses in aquatic organisms exposed to this contaminant. The concentrations of PFOA used in our research are lower than those examined in previous studies, providing crucial insights into the impacts of even minimal exposure levels. It highlights the potential of M. galloprovincialis as a bioindicator in environmental monitoring programs, providing crucial insights for environmental management and policymaking regarding regulating and monitoring PFOA in marine settings. Consequently, in a country where seafood consumption is the second largest in Europe, implementing environmental policies and regulatory measures to manage and monitor PFOA levels in marine environments is crucial. Full article
Show Figures

Figure 1

15 pages, 3134 KiB  
Article
Estrogenic Responsiveness of Brown Trout Primary Hepatocyte Spheroids to Environmental Levels of 17α-Ethinylestradiol
by Rodrigo F. Alves, Célia Lopes, Eduardo Rocha and Tânia Vieira Madureira
J. Xenobiot. 2024, 14(3), 1064-1078; https://doi.org/10.3390/jox14030060 - 6 Aug 2024
Cited by 2 | Viewed by 1737
Abstract
Three-dimensional (3D) fish hepatocyte cultures are promising alternative models for replicating in vivo data. Few studies have attempted to characterise the structure and function of fish 3D liver models and illustrate their applicability. This study aimed to further characterise a previously established spheroid [...] Read more.
Three-dimensional (3D) fish hepatocyte cultures are promising alternative models for replicating in vivo data. Few studies have attempted to characterise the structure and function of fish 3D liver models and illustrate their applicability. This study aimed to further characterise a previously established spheroid model obtained from juvenile brown trout (Salmo trutta) primary hepatocytes under estrogenic stimulation. The spheroids were exposed for six days to environmentally relevant concentrations of 17α-ethinylestradiol—EE2 (1–100 ng/L). The mRNA levels of peroxisome (catalase—Cat and urate oxidase—Uox), lipid metabolism (acyl-CoA long chain synthetase 1—Acsl1, apolipoprotein AI—ApoAI, and fatty acid binding protein 1—Fabp1), and estrogen-related (estrogen receptor α—ERα, estrogen receptor β—ERβ, vitellogenin A—VtgA, zona pellucida glycoprotein 2.5—ZP2.5, and zona pellucida glycoprotein 3a.2—ZP3a.2) target genes were evaluated by quantitative real-time polymerase chain reaction. Immunohistochemistry was used to assess Vtg and ZP protein expressions. At the highest EE2 concentration, VtgA and ZP2.5 genes were significantly upregulated. The remaining target genes were not significantly altered by EE2. Vtg and ZP immunostaining was consistently increased in spheroids exposed to 50 and 100 ng/L of EE2, whereas lower EE2 levels resulted in a weaker signal. EE2 did not induce significant changes in the spheroids’ viability and morphological parameters. This study identified EE2 effects at environmentally relevant doses in trout liver spheroids, indicating its usefulness as a proxy for in vivo impacts of xenoestrogens. Full article
(This article belongs to the Special Issue Feature Papers in Ecotoxicology)
Show Figures

Graphical abstract

18 pages, 17319 KiB  
Article
Genome-Wide Identification, Expression and Response to Estrogen of Vitellogenin Gene Family in Sichuan Bream (Sinibrama taeniatus)
by Zhe Zhao, Li Peng, Qiang Zhao and Zhijian Wang
Int. J. Mol. Sci. 2024, 25(12), 6739; https://doi.org/10.3390/ijms25126739 - 19 Jun 2024
Cited by 1 | Viewed by 1583
Abstract
To enhance our understanding of teleost reproductive physiology, we identified six Sichuan bream (Sinibrama taeniatus) vitellogenin genes (vtg1-6) and characterized their sequence structures. We categorized them into type Ⅰ (vtg1,4,5 and 6 [...] Read more.
To enhance our understanding of teleost reproductive physiology, we identified six Sichuan bream (Sinibrama taeniatus) vitellogenin genes (vtg1-6) and characterized their sequence structures. We categorized them into type Ⅰ (vtg1,4,5 and 6), type Ⅱ (vtg2) and type Ⅲ (vtg3) based on differences in their subdomain structure. The promoter sequence of vtgs has multiple estrogen response elements, and their abundance appears to correlate with the responsiveness of vtg gene expression to estrogen. Gene expression analyses revealed that the vitellogenesis of Sichuan bream involves both heterosynthesis and autosynthesis pathways, with the dominant pathway originating from the liver. The drug treatment experiments revealed that 17β-estradiol (E2) tightly regulated the level of vtg mRNA in the liver. Feeding fish with a diet containing 100 μg/g E2 for three weeks significantly induced vtg gene expression and ovarian development, leading to an earlier onset of vitellogenesis. Additionally, it was observed that the initiation of vtg transcription required E2 binding to its receptor, a process primarily mediated by estrogen receptor alpha in Sichuan bream. The findings of this study provide novel insights into the molecular information of the vitellogenin gene family in teleosts, thereby contributing to the regulation of gonadal development in farmed fish. Full article
Show Figures

Figure 1

22 pages, 5110 KiB  
Article
The Effect of Copper–Cadmium Co-Exposure and Hormone Remediation on the Ovarian Transcriptome of Nile Tilapia (Oreochromis niloticus)
by Yijie Wu, Liting Chen, Xin Yan, Jun Xiao, Zhirui Ma, Zhanyang Tang, Zhongbao Guo, Liping Li, Guixiang Tong, Honglian Tan, Fuyan Chen, Xinxian Wei, Ting Huang and Yongju Luo
Fishes 2024, 9(2), 67; https://doi.org/10.3390/fishes9020067 - 8 Feb 2024
Cited by 3 | Viewed by 2253
Abstract
The escalating problem of copper (Cu) and cadmium (Cd) pollution in aquatic environments poses a significant threat to the ovarian tissue and reproductive capacity of fish, hindering the development of the aquaculture industry. However, the combined effects of Cu and Cd on fish [...] Read more.
The escalating problem of copper (Cu) and cadmium (Cd) pollution in aquatic environments poses a significant threat to the ovarian tissue and reproductive capacity of fish, hindering the development of the aquaculture industry. However, the combined effects of Cu and Cd on fish gonadal development remain unclear. In this study, the fish species Nile tilapia was stressed with rearing water containing 300 μg/L Cu2+ and 100 μg/L Cd2+ for 30 days, followed by an intraperitoneal injection of luteinizing hormone-releasing hormone (LHRH-α) and human chorionic gonadotropin (HCG) at various concentrations. We investigated the ovarian transcriptome profiles before and after injection. Prior to injection, combined treatment with Cu and Cd resulted in reproductive dysfunction and metal ion imbalance in tilapia. Transcriptomic profiling revealed differential gene annotation concentrated in the MAPK signaling pathway and regulation of GTPase activity. Post-injection, all concentrations of LHRH-α and HCG groups showed an upregulated gonadosomatic index (G.S.I) and higher levels of vitellogenin (VTG), gonadotropin-releasing hormone (GnRH), gonadotropin (GTH), and estrogen (E2) in serum compared to the negative control group. Transcriptomic analysis revealed alterations in various ovarian signaling pathways, preliminarily revealing the in vivo molecular mechanisms and differences in LHRH-α and HCG. The findings from this study could help us better understand how to counteract the effects of combined Cu and Cd exposure on tilapia ovarian development, which has significant implications for the Nile tilapia aquaculture industry. Full article
Show Figures

Figure 1

13 pages, 1983 KiB  
Article
Pyriproxyfen Contamination in Daphnia magna: Identifying Early Warning Biomarkers
by Beatriz Salesa, Javier Torres-Gavilá, María Dolores Ferrando-Rodrigo and Encarnación Sancho
J. Xenobiot. 2024, 14(1), 214-226; https://doi.org/10.3390/jox14010013 - 2 Feb 2024
Cited by 3 | Viewed by 2083
Abstract
Pyriproxyfen is an insecticide currently employed in numerous countries for the management of agricultural and indoor pests. Several studies indicate that this insecticide has been detected in multiple rivers, with concentrations reaching as high as 99.59 ng/L in the Júcar River in Spain. [...] Read more.
Pyriproxyfen is an insecticide currently employed in numerous countries for the management of agricultural and indoor pests. Several studies indicate that this insecticide has been detected in multiple rivers, with concentrations reaching as high as 99.59 ng/L in the Júcar River in Spain. Therefore, the determination of some biochemical and genetic effects of this insecticide on aquatic organisms could serve as an early warning mechanism to identify potential disruptions in various biomarkers. Based on this, Daphnia magna organisms were exposed to pyriproxyfen sublethal concentrations for 21 days. Some biochemical parameters, including cholesterol, triglycerides, glucose, lactate, and LDH activity, were determined. Additionally, some genetic biomarkers associated with oxidative stress, heat shock proteins, lipid metabolism, hemoglobin, metallothioneins, and vitellogenin synthesis were evaluated in daphnids exposed to the insecticide for 21 days. LDH activity increased significantly in those daphnids exposed to the highest insecticide concentration (14.02 µg/L), while cholesterol levels decreased significantly. In contrast, glucose, total proteins, and triglycerides remained unaffected in D. magna exposed to pyriproxyfen. On the other hand, exposure to the insecticide led to notable alterations in gene expression among individuals. Specifically, genes associated with lipid metabolism and reproduction exhibited a significant reduction in gene expression. Fabd expression was decreased by approximately 20% in exposed daphnids, while vtg expression was suppressed as much as 80% when compared to control values. Furthermore, it was observed that the hgb1 and hgb2 genes, associated with hemoglobin synthesis, exhibited significant overexpression. Notably, the dysfunction observed in both hemoglobin genes was linked to an increase in pigmentation in Daphnia magna during the course of the experiment. These alterations in gene expression could serve as effective indicators of early contamination even at low pesticide concentrations. Full article
Show Figures

Figure 1

18 pages, 5205 KiB  
Article
Genome-Wide Identification of Vitellogenin Gene Family and Comparative Analysis of Their Involvement in Ovarian Maturation in Exopalaemon carinicauda
by Jiajia Wang, Shuai Tang, Qianqian Ge, Qiong Wang, Yuying He, Xianyun Ren, Jian Li and Jitao Li
Int. J. Mol. Sci. 2024, 25(2), 1089; https://doi.org/10.3390/ijms25021089 - 16 Jan 2024
Cited by 4 | Viewed by 1804
Abstract
Vitellogenin (Vtg) is a precursor of yolk proteins in egg-laying vertebrates and invertebrates and plays an important role in vitellogenesis and embryonic development. However, the Vtg family remains poorly characterized in Exopalaemon carinicauda, a major commercial mariculture species found along [...] Read more.
Vitellogenin (Vtg) is a precursor of yolk proteins in egg-laying vertebrates and invertebrates and plays an important role in vitellogenesis and embryonic development. However, the Vtg family remains poorly characterized in Exopalaemon carinicauda, a major commercial mariculture species found along the coasts of the Yellow and Bohai Seas. In this study, 10 Vtg genes from the genomes of E. carinicauda were identified and characterized. Phylogenetic analyses showed that the Vtg genes in crustaceans could be classified into four groups: Astacidea, Brachyra, Penaeidae, and Palaemonidae. EcVtg genes were unevenly distributed on the chromosomes of E. carinicauda, and a molecular evolutionary analysis showed that the EcVtg genes were primarily constrained by purifying selection during evolution. All putative EcVtg proteins were characterized by the presence of three conserved functional domains: a lipoprotein N-terminal domain (LPD_N), a domain of unknown function (DUF1943), and a von Willebrand factor type D domain (vWD). All EcVtg genes exhibited higher expression in the female hepatopancreas than in other tissues, and EcVtg gene expression during ovarian development suggested that the hepatopancreas is the main synthesis site in E. carinicauda. EcVtg1a, EcVtg2, and EcVtg3 play major roles in exogenous vitellogenesis, and EcVtg3 also plays a major role in endogenous vitellogenesis. Bilateral ablation of the eyestalk significantly upregulates EcVtg mRNA expression in the female hepatopancreas, indicating that the X-organ/sinus gland complex plays an important role in ovarian development, mostly by inducing Vtg synthesis. These results could improve our understanding of the function of multiple Vtg genes in crustaceans and aid future studies on the function of EcVtg genes during ovarian development in E. carinicauda. Full article
(This article belongs to the Special Issue Molecular Advance on Reproduction and Fertility of Aquatic Animals)
Show Figures

Figure 1

13 pages, 2340 KiB  
Article
Ultrasensitive Fluorescent “ON-OFF” Label-Free Immunosensor for Detection of Vitellogenin of Marine Medaka
by Chong Qi, Ailing Yang, Huaidong Wang, Zhenzhong Zhang and Jun Wang
Chemosensors 2022, 10(12), 510; https://doi.org/10.3390/chemosensors10120510 - 1 Dec 2022
Cited by 3 | Viewed by 2025
Abstract
The negative effects of environmental estrogens on wildlife and human beings are gaining increasing attention. Research on the highly sensitive detection method for Vitellogenin (Vtg), one of the biomarkers of environmental estrogens (EEs), is expected to detect weak estrogens in complex environments. This [...] Read more.
The negative effects of environmental estrogens on wildlife and human beings are gaining increasing attention. Research on the highly sensitive detection method for Vitellogenin (Vtg), one of the biomarkers of environmental estrogens (EEs), is expected to detect weak estrogens in complex environments. This study aimed to develop a label-free immunosensor with high specificity and sensitivity for testing Vtg. Carbon quantum dots (CQDs) with high fluorescence and excellent stability were synthesized, and antilipovitellin monoclonal antibody (Anti-Lv-mAb) was prepared. Based on the fluorescence resonance energy transfer (FRET) between CQDs-conjugated Anti-Lv-mAb and reduced graphene oxide (RGO), an ultrasensitive fluorescent “ON-OFF” label-free immunosensor for detection of Vtg of marine medaka was established. By modification of RGO with poly dimethyl diallyl ammonium chloride (PDDA), the Zeta potential of RGO was changed and the FRET efficiency was improved. The immunosensor displayed a wide linear response to Vtg of marine medaka from 0.1 to 3000 ng/mL, a low limit of detection (LOD) of 0.04 ng/mL, and excellent sensitivity (28,833.63 CPS/(ng/mL)), selectivity, and reproducibility. The results demonstrated that the fluorescent “ON-OFF” immunosensor is an easy-to-use, relatively fast, ultrasensitive, and accurate detection method for weak estrogenic activity. Full article
(This article belongs to the Special Issue Application of Luminescent Materials for Sensing)
Show Figures

Figure 1

18 pages, 7338 KiB  
Article
Combined Reproductive Effects of Imidacloprid, Acetochlor and Tebuconazole on Zebrafish (Danio rerio)
by Jin Yang, Yiming Chang, Yanning Zhang, Lizhen Zhu, Liangang Mao, Lan Zhang, Xingang Liu and Hongyun Jiang
Agriculture 2022, 12(12), 1979; https://doi.org/10.3390/agriculture12121979 - 23 Nov 2022
Cited by 9 | Viewed by 2983
Abstract
Pesticides usually occur as mixtures of multiple chemicals in the natural aquatic ecosystem, so research based on the toxicity data of a single compound on aquatic organisms is not enough to accurately assess the actual toxicity risk of pesticides. There is still a [...] Read more.
Pesticides usually occur as mixtures of multiple chemicals in the natural aquatic ecosystem, so research based on the toxicity data of a single compound on aquatic organisms is not enough to accurately assess the actual toxicity risk of pesticides. There is still a gap in the research on the reproductive toxicity of combined insecticides, herbicides and fungicides on zebrafish (Danio rerio). In this study, zebrafish were used to systematically investigate the separate and combined reproductive toxicity of imidacloprid (IMI), acetochlor (ACT) and tebuconazole (TBZ), which are commonly used in rice fields. Adult zebrafish were exposed to the three pesticides individually and in combination for 28 days, and the number, heartbeat, deformation rate, body length, and swim bladder development of F1 offspring embryos were observed and the reproductive hormones testosterone (T), estradiol (E2), and vitellogenin (VTG) contents and the expressions of nine reproductive genes (ar, esr2a, vtg1, gr, star, fshr, hmgcrb, 3βhsd and vasa) in the testes of the male and the ovaries of the female F0 zebrafish adults were measured to evaluate the individual and combined effects. The results showed that exposure to the mixtures of IMI, ACT and TBZ resulted in a decrease in heartbeat, body length and swim bladder development and an increase in the deformity rate of F1 offspring embryos compared to the individual exposure groups. In the combined exposure group, the content of T decreased significantly and the content of VTG increased significantly in the testes of the males; the content of T significantly increased, while the content of E2 and VTG significantly decreased in the ovaries of the females, indicating that combined exposure showed a more obvious endocrine-disrupting effect compared to the individual exposures. In addition, the expression of nine reproductive genes was significantly altered compared to the individual exposure groups. Therefore, our results indicated that the mixture of IMI, ACT and TBZ caused fewer number of F1 embryos, higher developmental defects of F1, greater disruption in the content of reproductive hormones and the expression of reproductive genes compared to the individual pesticides at the corresponding doses. Therefore, the presence of pesticides in mixtures in the real water environment is likely to increase the toxic reproductive effects on zebrafish and cause more serious impacts on aquatic ecosystems. Full article
(This article belongs to the Special Issue Impacts of Pesticides on Soil and Environment)
Show Figures

Figure 1

Back to TopTop