Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = virus positive Merkel cell carcinoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 2291 KiB  
Review
Understanding Merkel Cell Carcinoma: Pathogenic Signaling, Extracellular Matrix Dynamics, and Novel Treatment Approaches
by Maria Konstantaraki, Aikaterini Berdiaki, Monica Neagu, Sabina Zurac, Konstantinos Krasagakis and Dragana Nikitovic
Cancers 2025, 17(7), 1212; https://doi.org/10.3390/cancers17071212 - 2 Apr 2025
Viewed by 2671
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer, driven by either Merkel cell polyomavirus (MCPyV) integration or ultraviolet (UV)-induced mutations. In MCPyV-positive tumors, viral T antigens inactivate tumor suppressors pRb and p53, while virus-negative MCCs harbor UV-induced mutations that [...] Read more.
Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine skin cancer, driven by either Merkel cell polyomavirus (MCPyV) integration or ultraviolet (UV)-induced mutations. In MCPyV-positive tumors, viral T antigens inactivate tumor suppressors pRb and p53, while virus-negative MCCs harbor UV-induced mutations that activate similar oncogenic pathways. Key signaling cascades, including PI3K/AKT/mTOR and MAPK, support tumor proliferation, survival, and resistance to apoptosis. Histologically, MCC consists of small round blue cells with neuroendocrine features, high mitotic rate, and necrosis. The tumor microenvironment (TME) plays a central role in disease progression and immune escape. It comprises a mix of tumor-associated macrophages, regulatory and cytotoxic T cells, and elevated expression of immune checkpoint molecules such as PD-L1, contributing to an immunosuppressive niche. The extracellular matrix (ECM) within the TME is rich in proteoglycans, collagens, and matrix metalloproteinases (MMPs), facilitating tumor cell adhesion, invasion, and interaction with stromal and immune cells. ECM remodeling and integrin-mediated signaling further promote immune evasion and therapy resistance. Although immune checkpoint inhibitors targeting PD-1/PD-L1 have shown promise in treating MCC, resistance remains a major hurdle. Therapeutic strategies that concurrently target the TME—through inhibition of ECM components, MMPs, or integrin signaling—may enhance immune responses and improve clinical outcomes. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

13 pages, 3282 KiB  
Review
Merkel Cell Polyomavirus Co-Infection in HIV/AIDS Individuals: Clinical Diagnosis, Consequences and Treatments
by Xianfeng Zhou, Chenxue Yin, Ziqi Lin, Zhangren Yan and Jiangang Wang
Pathogens 2025, 14(2), 134; https://doi.org/10.3390/pathogens14020134 - 2 Feb 2025
Viewed by 1200
Abstract
Merkel cell polyomavirus (MCV) was named for its role as the causative agent of Merkel cell carcinoma (MCC), which is MCV positive in approximately 80% of cases. MCV is classified as a Group 2A carcinogen, which promotes carcinogenesis by integrating T-antigen into the [...] Read more.
Merkel cell polyomavirus (MCV) was named for its role as the causative agent of Merkel cell carcinoma (MCC), which is MCV positive in approximately 80% of cases. MCV is classified as a Group 2A carcinogen, which promotes carcinogenesis by integrating T-antigen into the cell genome. The prevalence of anti-MCV antibodies in the general population can be as high as 90%. MCV typically promotes cancer by integrating T-antigen genes into the host cell genome, and 80% of MCC cases are attributed to MCV activation. In immunocompetent individuals, MCV usually remains latent after infection. However, the incidence of MCC increases significantly in immunocompromised or immunodeficient patients, such as those who have undergone organ transplantation, have chronic lymphocytic leukemia, or are living with human immunodeficiency virus (HIV) infection. Acquired immunodeficiency is a particular feature of people living with HIV. Currently, research on HIV/AIDS patients with MCV infection, clinical outcomes, and treatments is quite limited. This paper reviews previous research and systematically examines the relationship between HIV/AIDS and MCV-associated diseases, with the aim of providing valuable information for the prevention, diagnosis, and treatment of MCV in vulnerable populations. Full article
Show Figures

Figure 1

11 pages, 1402 KiB  
Article
Merkel Cell Polyomavirus in the Context of Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders
by Sara Passerini, Giulia Babini, Elisabetta Merenda, Raffaella Carletti, Daniela Scribano, Luigi Rosa, Antonietta Lucia Conte, Ugo Moens, Livia Ottolenghi, Umberto Romeo, Maria Pia Conte, Cira Rosaria Tiziana Di Gioia and Valeria Pietropaolo
Biomedicines 2024, 12(4), 709; https://doi.org/10.3390/biomedicines12040709 - 22 Mar 2024
Cited by 5 | Viewed by 1804
Abstract
Despite recent advances in prevention, detection and treatment, oral squamous cell carcinoma (OSCC) remains a global health concern, strongly associated with environmental and lifestyle risk factors and infection with oncogenic viruses. Merkel Cell Polyomavirus (MCPyV), well known to be the causative agent of [...] Read more.
Despite recent advances in prevention, detection and treatment, oral squamous cell carcinoma (OSCC) remains a global health concern, strongly associated with environmental and lifestyle risk factors and infection with oncogenic viruses. Merkel Cell Polyomavirus (MCPyV), well known to be the causative agent of Merkel Cell Carcinoma (MCC) has been found in OSCC, suggesting its potential role as a co-factor in the development of oral cavity cancers. To improve our understanding about MCPyV in oral cavities, the detection and analysis of MCPyV DNA, transcripts and miRNA were performed on OSCCs and oral potentially malignant disorders (OPMDs). In addition, the cellular miR-375, known to be deregulated in tumors, was examined. MCPyV DNA was found in 3 out of 11 OSCC and 4 out of 12 OPMD samples, with a viral mean value of 1.49 × 102 copies/mL. Viral integration was not observed and LTAg and VP1 transcripts were detected. Viral miRNAs were not detected whereas the cellular miR-375 was found over expressed in all MCPyV positive oral specimens. Our results reported evidence of MCPyV replication in both OSCC and OPMD suggesting the oral cavity as a site of replicative MCPyV infection, therefore underscoring an active role of this virus in the occurrence of oral lesions. Full article
(This article belongs to the Special Issue Progress in Oral Microbiome Related to Oral Diseases)
Show Figures

Figure 1

20 pages, 2442 KiB  
Article
An Investigation of Structure–Activity Relationships and Cell Death Mechanisms of the Marine Alkaloids Discorhabdins in Merkel Cell Carcinoma Cells
by Maria Orfanoudaki, Emily A. Smith, Natasha T. Hill, Khalid A. Garman, Isaac Brownell, Brent R. Copp, Tanja Grkovic and Curtis J. Henrich
Mar. Drugs 2023, 21(9), 474; https://doi.org/10.3390/md21090474 - 29 Aug 2023
Cited by 6 | Viewed by 4136
Abstract
A library of naturally occurring and semi-synthetic discorhabdins was assessed for their effects on Merkel cell carcinoma (MCC) cell viability. The set included five new natural products and semi-synthetic compounds whose structures were elucidated with NMR, HRMS, and ECD techniques. Several discorhabdins averaged [...] Read more.
A library of naturally occurring and semi-synthetic discorhabdins was assessed for their effects on Merkel cell carcinoma (MCC) cell viability. The set included five new natural products and semi-synthetic compounds whose structures were elucidated with NMR, HRMS, and ECD techniques. Several discorhabdins averaged sub-micromolar potency against the MCC cell lines tested and most of the active compounds showed selectivity towards virus-positive MCC cell lines. An investigation of structure–activity relationships resulted in an expanded understanding of the crucial structural features of the discorhabdin scaffold. Mechanistic cell death assays suggested that discorhabdins, unlike many other MCC-active small molecules, do not induce apoptosis, as shown by the lack of caspase activation, annexin V staining, and response to caspase inhibition. Similarly, discorhabdin treatment failed to increase MCC intracellular calcium and ROS levels. In contrast, the rapid loss of cellular reducing potential and mitochondrial membrane potential suggested that discorhabdins induce mitochondrial dysfunction leading to non-apoptotic cell death. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 3.0)
Show Figures

Graphical abstract

14 pages, 2234 KiB  
Article
4-[(5-Methyl-1H-pyrazol-3-yl)amino]-2H-phenyl-1-phthalazinone Inhibits MCPyV T Antigen Expression in Merkel Cell Carcinoma Independent of Aurora Kinase A
by Roland Houben, Pamela Alimova, Bhavishya Sarma, Sonja Hesbacher, Carolin Schulte, Eva-Maria Sarosi, Christian Adam, Thibault Kervarrec and David Schrama
Cancers 2023, 15(9), 2542; https://doi.org/10.3390/cancers15092542 - 28 Apr 2023
Viewed by 1787
Abstract
Merkel cell carcinoma (MCC) is frequently caused by the Merkel cell polyomavirus (MCPyV), and MCPyV-positive tumor cells depend on expression of the virus-encoded T antigens (TA). Here, we identify 4-[(5-methyl-1H-pyrazol-3-yl)amino]-2H-phenyl-1-phthalazinone (PHT)—a reported inhibitor of Aurora kinase A—as a compound inhibiting growth of MCC [...] Read more.
Merkel cell carcinoma (MCC) is frequently caused by the Merkel cell polyomavirus (MCPyV), and MCPyV-positive tumor cells depend on expression of the virus-encoded T antigens (TA). Here, we identify 4-[(5-methyl-1H-pyrazol-3-yl)amino]-2H-phenyl-1-phthalazinone (PHT)—a reported inhibitor of Aurora kinase A—as a compound inhibiting growth of MCC cells by repressing noncoding control region (NCCR)-controlled TA transcription. Surprisingly, we find that TA repression is not caused by inhibition of Aurora kinase A. However, we demonstrate that β-catenin—a transcription factor repressed by active glycogen synthase kinase 3 (GSK3)—is activated by PHT, suggesting that PHT bears a hitherto unreported inhibitory activity against GSK3, a kinase known to function in promoting TA transcription. Indeed, applying an in vitro kinase assay, we demonstrate that PHT directly targets GSK3. Finally, we demonstrate that PHT exhibits in vivo antitumor activity in an MCC xenograft mouse model, suggesting a potential use in future therapeutic settings for MCC. Full article
(This article belongs to the Section Infectious Agents and Cancer)
Show Figures

Figure 1

21 pages, 4316 KiB  
Review
Merkel Cell Polyomavirus: Infection, Genome, Transcripts and Its Role in Development of Merkel Cell Carcinoma
by Roland Houben, Büke Celikdemir, Thibault Kervarrec and David Schrama
Cancers 2023, 15(2), 444; https://doi.org/10.3390/cancers15020444 - 10 Jan 2023
Cited by 17 | Viewed by 5879
Abstract
The best characterized polyomavirus family member, i.e., simian virus 40 (SV40), can cause different tumors in hamsters and can transform murine and human cells in vitro. Hence, the SV40 contamination of millions of polio vaccine doses administered from 1955–1963 raised fears that this [...] Read more.
The best characterized polyomavirus family member, i.e., simian virus 40 (SV40), can cause different tumors in hamsters and can transform murine and human cells in vitro. Hence, the SV40 contamination of millions of polio vaccine doses administered from 1955–1963 raised fears that this may cause increased tumor incidence in the vaccinated population. This is, however, not the case. Indeed, up to now, the only polyomavirus family member known to be the most important cause of a specific human tumor entity is Merkel cell polyomavirus (MCPyV) in Merkel cell carcinoma (MCC). MCC is a highly deadly form of skin cancer for which the cellular origin is still uncertain, and which appears as two clinically very similar but molecularly highly different variants. While approximately 80% of cases are found to be associated with MCPyV the remaining MCCs carry a high mutational load. Here, we present an overview of the multitude of molecular functions described for the MCPyV encoded oncoproteins and non-coding RNAs, present the available MCC mouse models and discuss the increasing evidence that both, virus-negative and -positive MCC constitute epithelial tumors. Full article
(This article belongs to the Section Infectious Agents and Cancer)
Show Figures

Figure 1

15 pages, 2337 KiB  
Article
Therapeutic Potential of 5′-Methylschweinfurthin G in Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma
by Emily J. Koubek, Jillian S. Weissenrieder, Luz E. Ortiz, Nnenna Nwogu, Alexander M. Pham, J. Dylan Weissenkampen, Jessie L. Reed, Jeffrey D. Neighbors, Raymond J. Hohl and Hyun Jin Kwun
Viruses 2022, 14(9), 1848; https://doi.org/10.3390/v14091848 - 23 Aug 2022
Cited by 4 | Viewed by 2985
Abstract
Merkel cell carcinoma (MCC) is a rare but aggressive form of skin cancer predominantly caused by the human Merkel cell polyomavirus (MCPyV). Treatment for MCC includes excision and radiotherapy of local disease, and chemotherapy or immunotherapy for metastatic disease. The schweinfurthin family of [...] Read more.
Merkel cell carcinoma (MCC) is a rare but aggressive form of skin cancer predominantly caused by the human Merkel cell polyomavirus (MCPyV). Treatment for MCC includes excision and radiotherapy of local disease, and chemotherapy or immunotherapy for metastatic disease. The schweinfurthin family of natural compounds previously displayed potent and selective growth inhibitory activity against the NCI-60 panel of human-derived cancer cell lines. Here, we investigated the impact of schweinfurthin on human MCC cell lines. Treatment with the schweinfurthin analog, 5′-methylschweinfurth G (MeSG also known as TTI-3114), impaired metabolic activity through induction of an apoptotic pathway. MeSG also selectively inhibited PI3K/AKT and MAPK/ERK pathways in the MCPyV-positive MCC cell line, MS-1. Interestingly, expression of the MCPyV small T (sT) oncogene selectively sensitizes mouse embryonic fibroblasts to MeSG. These results suggest that the schweinfurthin family of compounds display promising potential as a novel therapeutic option for virus-induced MCCs. Full article
(This article belongs to the Special Issue New Frontiers in Small DNA Virus Research)
Show Figures

Figure 1

23 pages, 4792 KiB  
Article
The Merkel Cell Polyomavirus T-Antigens and IL-33/ST2-IL1RAcP Axis: Possible Role in Merkel Cell Carcinoma
by Kashif Rasheed, Ugo Moens, Benedetta Policastro, John Inge Johnsen, Virve Koljonen, Harri Sihto, Weng-Onn Lui and Baldur Sveinbjørnsson
Int. J. Mol. Sci. 2022, 23(7), 3702; https://doi.org/10.3390/ijms23073702 - 28 Mar 2022
Cited by 6 | Viewed by 3664
Abstract
Merkel cell polyomavirus (MCPyV) is a causal factor in Merkel cell carcinoma (MCC). The oncogenic potential is mediated through its viral oncoproteins large T-antigen (LT) and small T-antigen (sT). Cytokines produced by tumor cells play an important role in cancer pathogenesis, and viruses [...] Read more.
Merkel cell polyomavirus (MCPyV) is a causal factor in Merkel cell carcinoma (MCC). The oncogenic potential is mediated through its viral oncoproteins large T-antigen (LT) and small T-antigen (sT). Cytokines produced by tumor cells play an important role in cancer pathogenesis, and viruses affect their expression. Therefore, we compared human cytokine and receptor transcript levels in virus positive (V+) and virus negative (V−) MCC cell lines. Increased expression of IL-33, a potent modulator of tumor microenvironment, was observed in V+ MCC cell lines when compared to V− MCC-13 cells. Transient transfection studies with luciferase reporter plasmids demonstrated that LT and sT stimulated IL-33, ST2/IL1RL1 and IL1RAcP promoter activity. The induction of IL-33 expression was confirmed by transfecting MCC-13 cells with MCPyV LT. Furthermore, recombinant human cytokine domain IL-33 induced activation of MAP kinase and NF-κB pathways, which could be blocked by a ST2 receptor antibody. Immunohistochemical analysis demonstrated a significantly stronger IL-33, ST2, and IL1RAcP expression in MCC tissues compared to normal skin. Of interest, significantly higher IL-33 and IL1RAcP protein levels were observed in MCC patient plasma compared to plasma from healthy controls. Previous studies have demonstrated the implication of the IL-33/STL2 pathway in cancer. Because our results revealed a T-antigens-dependent induction of the IL-33/ST2 axis, IL-33/ST2 may play a role in the tumorigenesis of MCPyV-positive MCC. Therefore, neutralizing the IL-33/ST2 axis may present a novel therapeutic approach for MCC patients. Full article
(This article belongs to the Special Issue Role of Signaling Pathways in the Viral Life Cycle 2.0)
Show Figures

Figure 1

23 pages, 15855 KiB  
Article
Organotypic Epithelial Raft Cultures as a Three-Dimensional In Vitro Model of Merkel Cell Carcinoma
by Arturo Temblador, Dimitrios Topalis, Joost van den Oord, Graciela Andrei and Robert Snoeck
Cancers 2022, 14(4), 1091; https://doi.org/10.3390/cancers14041091 - 21 Feb 2022
Cited by 3 | Viewed by 3792
Abstract
Merkel cell carcinoma (MCC) is a rare type of skin cancer for which an in vitro model is still lacking. MCC tumorigenesis is associated either with the integration of Merkel cell polyomavirus into the host genome, or with the accumulation of somatic mutations [...] Read more.
Merkel cell carcinoma (MCC) is a rare type of skin cancer for which an in vitro model is still lacking. MCC tumorigenesis is associated either with the integration of Merkel cell polyomavirus into the host genome, or with the accumulation of somatic mutations upon chronic exposure to UV light. Transgenic animals expressing the viral oncoproteins, which are constitutively expressed in virus-related MCC, do not fully recapitulate MCC. Although cell-line-derived xenografts have been established for the two subtypes of MCC, they still present certain limitations. Here, we generated organotypic epithelial raft cultures (OERCs) of MCC by using primary human keratinocytes and both virus-positive and virus-negative MCC cell lines. The primary human keratinocytes and the tumor cells were grown on top of a dermal equivalent. Histological and immunohistochemical examination of the rafts confirmed the growth of MCC cells. Furthermore, gene expression analysis revealed differences in the expression profiles of the distinct tumor cells and the keratinocytes at the transcriptional level. In summary, considering the limited availability of patient samples, OERCs of MCC may constitute a suitable model for evaluating the efficacy and selectivity of new drug candidates against MCC; moreover, they are a potential tool to study the oncogenic mechanisms of this malignancy. Full article
(This article belongs to the Special Issue Rare Skin Cancers: Recent Advances in Classification and Management)
Show Figures

Figure 1

21 pages, 363 KiB  
Review
Merkel Cell Carcinoma of the Head and Neck: Epidemiology, Pathogenesis, Current State of Treatment and Future Directions
by Mehran Behruj Yusuf, Grant McKenzie, Abbas Rattani, Paul Tennant, Jeffrey Bumpous, Donald Miller and Neal Dunlap
Cancers 2021, 13(14), 3506; https://doi.org/10.3390/cancers13143506 - 13 Jul 2021
Cited by 9 | Viewed by 3985
Abstract
Merkel cell carcinoma (MCC) is a rare, cutaneous neuroendocrine malignancy with increasing incidence. The skin of the head and neck is a common subsite for MCC with distinctions in management from other anatomic areas. Given the rapid pace of developments regarding MCC pathogenesis [...] Read more.
Merkel cell carcinoma (MCC) is a rare, cutaneous neuroendocrine malignancy with increasing incidence. The skin of the head and neck is a common subsite for MCC with distinctions in management from other anatomic areas. Given the rapid pace of developments regarding MCC pathogenesis (Merkel cell polyoma virus (MCPyV)-positive or virus-negative, cell of origin), diagnosis, staging and treatment, and up to date recommendations are critical for optimizing outcomes. This review aims to summarize currently available literature for MCC of the head and neck. The authors reviewed current literature, including international guidelines regarding MCC pathogenesis, epidemiology, diagnosis, staging, and treatment. Subsequently recommendations were derived including the importance of baseline imaging, MCPyV serology testing, primary site surgery, nodal evaluation, radiotherapy, and the increasing role of immune modulating agents in MCC. MCPyV serology testing is increasingly important with potential distinctions in treatment response and surveillance between virus-positive and virus-negative MCC. Surgical management continues to balance optimizing local control with minimal morbidity. Similarly, radiotherapy continues to have importance in the adjuvant, definitive, and palliative setting for MCC of the head and neck. Immunotherapy has changed the paradigm for advanced MCC, with increasing work focusing on optimizing outcomes for non-responders and high-risk patients, including those with immunosuppression. Full article
(This article belongs to the Special Issue Advances in Head and Neck Oncology)
14 pages, 2440 KiB  
Article
Merkel Cell Carcinoma of Unknown Primary: Immunohistochemical and Molecular Analyses Reveal Distinct UV-Signature/MCPyV-Negative and High Immunogenicity/MCPyV-Positive Profiles
by Piotr Donizy, Joanna P. Wróblewska, Dora Dias-Santagata, Katarzyna Woznica, Przemyslaw Biecek, Mark C. Mochel, Cheng-Lin Wu, Janusz Kopczynski, Malgorzata Pieniazek, Janusz Ryś, Andrzej Marszalek and Mai P. Hoang
Cancers 2021, 13(7), 1621; https://doi.org/10.3390/cancers13071621 - 31 Mar 2021
Cited by 14 | Viewed by 2954
Abstract
Background: Merkel cell carcinomas of unknown primary (MCC-UPs) are defined as deep-seated tumors without an associated cutaneous tumor. Although the distinction has important clinical implications, it remains unclear whether these tumors represent primary tumors of lymph nodes or metastatic cutaneous primaries. Methods: We [...] Read more.
Background: Merkel cell carcinomas of unknown primary (MCC-UPs) are defined as deep-seated tumors without an associated cutaneous tumor. Although the distinction has important clinical implications, it remains unclear whether these tumors represent primary tumors of lymph nodes or metastatic cutaneous primaries. Methods: We compared the immunohistochemical profiles of four groups of MCCs (Merkel cell polyomavirus (MCPyV)-positive UP, MCPyV-negative UP, MCPyV-positive known primary (KP), and MCPyV-negative KP) using B-cell and pre-B-cell markers, cell cycle regulating proteins, follicular stem cell markers, and immune markers, and performed next generation and Sanger sequencing. Results: Virus-positive and virus-negative MCC-UPs exhibited an immunoprofile similar to virus-positive and virus-negative primary cutaneous MCCs, respectively. MCC-UP tumors (both virus-positive and -negative) were immunogenic with similar or even higher tumoral PD-L1 expression and intratumoral CD8 and FoxP3 infiltrates in comparison to MCPyV-positive cutaneous tumors. In addition, similar to primary cutaneous MCCs, MCPyV-negative MCC-UPs exhibited UV signatures and frequent high tumor mutational burdens, whereas few molecular alterations were noted in MCPyV-positive MCC-UPs. Conclusions: Our results showed distinct UV-signatures in MCPyV-negative tumors and high immunogenicity in MCPyV-positive tumors. Although additional studies are warranted for the MCPyV-positive cases, our findings are supportive of a cutaneous metastatic origin for MCPyV-negative MCC-UP tumors. Full article
(This article belongs to the Special Issue Rare Skin Cancers: Recent Advances in Classification and Management)
Show Figures

Figure 1

12 pages, 1488 KiB  
Article
Distinct Signatures of Genomic Copy Number Variants Define Subgroups of Merkel Cell Carcinoma Tumors
by Natasha T. Hill, David Kim, Klaus J. Busam, Emily Y. Chu, Clayton Green and Isaac Brownell
Cancers 2021, 13(5), 1134; https://doi.org/10.3390/cancers13051134 - 6 Mar 2021
Cited by 8 | Viewed by 2620
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Most MCC tumors contain integrated Merkel cell polyomavirus DNA (virus-positive MCC, VP-MCC) and carry a low somatic mutation burden whereas virus-negative MCC (VN-MCC) possess numerous ultraviolet-signature mutations. In contrast to viral oncogenes [...] Read more.
Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Most MCC tumors contain integrated Merkel cell polyomavirus DNA (virus-positive MCC, VP-MCC) and carry a low somatic mutation burden whereas virus-negative MCC (VN-MCC) possess numerous ultraviolet-signature mutations. In contrast to viral oncogenes and sequence mutations, little is known about genomic structural variants in MCC. To identify copy number variants in commonly altered genes, we analyzed genomic DNA from 31 tumor samples using the Nanostring nCounter copy number cancer panel. Unsupervised clustering revealed three tumor groups with distinct genomic structural variant signatures. The first cluster was characterized by multiple recurrent deletions in genes such as RB1 and WT1. The second cluster contained eight VP-MCC and displayed very few structural variations. The final cluster contained one VP-MCC and four VN-MCC with predominantly genomic amplifications in genes like MDM4, SKP2, and KIT and deletions in TP53. Overall, VN-MCC contained more structure variation than VP-MCC but did not cluster separately from VP-MCC. The observation that most MCC tumors demonstrate a deletion-dominated structural group signature, independent of virus status, suggests a shared pathophysiology among most VP-MCC and VN-MCC tumors. Full article
(This article belongs to the Special Issue The Biological and Clinical Aspects of Merkel Cell Carcinoma)
Show Figures

Figure 1

15 pages, 2272 KiB  
Article
Mutational Landscape of Virus- and UV-Associated Merkel Cell Carcinoma Cell Lines Is Comparable to Tumor Tissue
by Kai Horny, Patricia Gerhardt, Angela Hebel-Cherouny, Corinna Wülbeck, Jochen Utikal and Jürgen C. Becker
Cancers 2021, 13(4), 649; https://doi.org/10.3390/cancers13040649 - 5 Feb 2021
Cited by 18 | Viewed by 4029
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive cutaneous malignancy that is either associated with the integration of the Merkel cell polyomavirus or chronic UV exposure. These two types of carcinogenesis are reflected in characteristic mutational features present in MCC tumor lesions. [...] Read more.
Merkel cell carcinoma (MCC) is a rare, highly aggressive cutaneous malignancy that is either associated with the integration of the Merkel cell polyomavirus or chronic UV exposure. These two types of carcinogenesis are reflected in characteristic mutational features present in MCC tumor lesions. However, the genomic characteristics of MCC cell lines used as preclinical models are not well established. Thus, we analyzed the exomes of three virus-negative and six virus-positive MCC cell lines, all showing a classical neuroendocrine growth pattern. Virus-negative cell lines are characterized by a high tumor mutational burden (TMB), UV-light-induced DNA damage, functionally relevant coding mutations, e.g., in RB1 and TP53, and large amounts of copy number variations (CNVs). In contrast, virus-positive cell lines have a low TMB with few coding mutations and lack prominent mutational signatures, but harbor characteristic CNVs. One of the virus-negative cell lines has a local MYC amplification associated with high MYC mRNA expression. In conclusion, virus-positive and -negative MCC cell lines with a neuroendocrine growth pattern resemble mutational features observed in MCC tissue samples, which strengthens their utility for functional studies. Full article
(This article belongs to the Special Issue The Biological and Clinical Aspects of Merkel Cell Carcinoma)
Show Figures

Figure 1

11 pages, 1340 KiB  
Article
Molecular Profiling of Merkel Cell Polyomavirus-Associated Merkel Cell Carcinoma and Cutaneous Melanoma
by Attila Mokánszki, Gábor Méhes, Szilvia Lilla Csoma, Sándor Kollár and Yi-Che Chang Chien
Diagnostics 2021, 11(2), 212; https://doi.org/10.3390/diagnostics11020212 - 1 Feb 2021
Cited by 10 | Viewed by 3435
Abstract
Merkel cell carcinoma (MCC) is a rare, high-grade, aggressive cutaneous neuroendocrine malignancy most commonly associated with sun-exposed areas of older individuals. A relatively newly identified human virus, the Merkel cell polyomavirus (MCPyV) has been implicated in the pathogenesis of MCC. Our study aimed [...] Read more.
Merkel cell carcinoma (MCC) is a rare, high-grade, aggressive cutaneous neuroendocrine malignancy most commonly associated with sun-exposed areas of older individuals. A relatively newly identified human virus, the Merkel cell polyomavirus (MCPyV) has been implicated in the pathogenesis of MCC. Our study aimed to examine nine MCC cases and randomly selected 60 melanoma cases to identify MCPyV status and to elucidate genetic differences between virus-positive and -negative cases. Altogether, seven MCPyV-positive MCC samples and four melanoma samples were analyzed. In MCPyV-positive MCC RB1, TP53, FBXW7, CTNNB1, and HNF1A pathogenic variants were identified, while in virus-negative cases only benign variants were found. In MCPyV-positive melanoma cases, besides BRAF mutations the following genes were also affected: PIK3CA, STK11, CDKN2A, SMAD4, and APC. In contrast to studies found in the literature, a higher tumor burden was detected in virus-associated MCC compared to MCPyV-negative cases. No association was identified between virus infection and tumor burden in melanoma samples. We concluded that analyzing the key morphologic and immunohistological features of MCC is critical to avoid confusion with other cutaneous malignancies. Molecular genetic investigations such as next-generation sequencing (NGS) enable molecular stratification, which may have future clinical impact. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

10 pages, 1617 KiB  
Article
Sex Differences in Overall Survival and the Effect of Radiotherapy in Merkel Cell Carcinoma—A Retrospective Analysis of A Swedish Cohort
by Hannah Björn Andtback, Viveca Björnhagen-Säfwenberg, Hao Shi, Weng-Onn Lui, Giuseppe V. Masucci and Lisa Villabona
Cancers 2021, 13(2), 265; https://doi.org/10.3390/cancers13020265 - 12 Jan 2021
Cited by 11 | Viewed by 2546
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer where Merkel cell Polyomavirus (MCPyV) contributes to the pathogenesis. In an adjuvant setting, radiotherapy (RT) is believed to give a survival benefit. The prognostic impact of sex related to MCPyV-status and adjuvant [...] Read more.
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer where Merkel cell Polyomavirus (MCPyV) contributes to the pathogenesis. In an adjuvant setting, radiotherapy (RT) is believed to give a survival benefit. The prognostic impact of sex related to MCPyV-status and adjuvant RT were analyzed in patients referred to Karolinska University Hospital. Data were collected from 113 patients’ hospital records and MCPyV analyses were made in 54 patients (48%). We found a significantly better overall survival (OS) for women compared to men and a significant difference in OS in patients receiving adjuvant RT. Furthermore, we found that men with virus negative MCC have an increased risk for earlier death (HR 3.6). This indicates that MCPyV positive and negative MCC act as two different diseases, and it might be due to different mechanism in the immune response between male and female patients. This could have significance in tailoring treatment and follow-up in MCC patients in the future. Full article
(This article belongs to the Special Issue The Biological and Clinical Aspects of Merkel Cell Carcinoma)
Show Figures

Graphical abstract

Back to TopTop