Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = video lander

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3102 KB  
Article
Fishes Associated with a Vulnerable Marine Ecosystem Network in the Central Mediterranean Sea
by Angela Carluccio, Francesca Capezzuto, Porzia Maiorano, Letizia Sion and Gianfranco D’Onghia
Fishes 2024, 9(11), 433; https://doi.org/10.3390/fishes9110433 - 26 Oct 2024
Cited by 1 | Viewed by 1542
Abstract
In order to collect information on ichthyofauna of a deep-sea vulnerable marine ecosystem (VME) network along the Apulian margin (central Mediterranean Sea), two low-impact sampling tools were used in three VMEs characterized by cold-water corals (CWC), namely Bari Canyon (BC), off Monopoli (Mn), [...] Read more.
In order to collect information on ichthyofauna of a deep-sea vulnerable marine ecosystem (VME) network along the Apulian margin (central Mediterranean Sea), two low-impact sampling tools were used in three VMEs characterized by cold-water corals (CWC), namely Bari Canyon (BC), off Monopoli (Mn), and off Santa Maria di Leuca (SML). Using an experimental longline, 53 deployments were carried out between a 314 and 650 m depth for a total of 217 fishing hours, whereas when using the baited lander MEMO (Marine Environment MOnitoring system), 31 deployments were carried out between 427 and 792 m, for a total of 223 h of video recordings. A total of 37 taxa were recorded, comprising 13 Chondrichthyes and 24 Osteichthyes. The similarities in species observed among the VMEs confirm the presence of a network of CWC-VMEs along the Apulian margin, whereas some differences detected are due to the different abundance of some species, such as Galeus melastomus, Helicolenus dactylopterus, and Phycis blennoides. The presence of commercial species, vulnerable/endangered cartilaginous fishes, and large and sexually mature individuals of G. melastomus, H. dactylopterus, and Pagellus bogaraveo in all the VMEs confirms that the network of CWC-VMEs along the Apulian margin can act as a network of refuge areas and an essential fish habitat (EFH) for species threatened by fishing activities. Full article
(This article belongs to the Special Issue Biology and Ecology of Coral Reef Fishes)
Show Figures

Figure 1

10 pages, 5988 KB  
Communication
Benthic Biodiversity by Baited Camera Observations on the Cosmonaut Sea Shelf of East Antarctica
by Jianfeng Mou, Xuebao He, Kun Liu, Yaqin Huang, Shuyi Zhang, Yongcan Zu, Yanan Liu, Shunan Cao, Musheng Lan, Xing Miao, Heshan Lin and Wenhua Liu
Diversity 2024, 16(5), 277; https://doi.org/10.3390/d16050277 - 6 May 2024
Cited by 2 | Viewed by 2113
Abstract
A free-fall baited camera lander was launched for the first time on the Cosmonaut Sea shelf of East Antarctica at a depth of 694 m during the 38th Chinese National Antarctic Research Expedition (CHINARE) in 2022. We identified 31 unique taxa (23 were [...] Read more.
A free-fall baited camera lander was launched for the first time on the Cosmonaut Sea shelf of East Antarctica at a depth of 694 m during the 38th Chinese National Antarctic Research Expedition (CHINARE) in 2022. We identified 31 unique taxa (23 were invertebrates and eight were fish) belonging to eight phyla from 2403 pictures and 40 videos. The Antarctic jonasfish (Notolepis coatsi) was the most frequently observed fish taxa. Ten species of vulnerable marine ecosystem (VME) taxa were observed, accounting for 32% of all species. The maximum number (MaxN) of Natatolana meridionalis individuals per image frame was ten, and they were attracted to the bait. The macrobenthic community type were sessile suspension feeders with associated fauna (SSFA), which was shaped by the muddy substrata with scattered rocks. Rocks served as the best habitats for sessile fauna. The study reveals the megafauna community and their habitat by image survey in the Cosmonaut Sea for the first time. It helped us obtain Antarctic biodiversity baselines and monitoring data for future ecosystem health assessment and better protection. Full article
(This article belongs to the Special Issue Ecology and Biogeography of Marine Benthos)
Show Figures

Figure 1

9 pages, 1482 KB  
Article
Depth Range Extension for the Misty Grouper Hyporthodus mystacinus Documented via Deep-Sea Landers throughout the Greater Caribbean
by Shannon E. Aldridge, Olivia F. L. Dixon, Christine de Silva, Johanna K. Kohler, Oliver N. Shipley, Brennan T. Phillips, Teresa F. Fernandes, Timothy Austin, Rupert F. Ormond, Mauvis A. Gore and Austin J. Gallagher
Fishes 2024, 9(4), 114; https://doi.org/10.3390/fishes9040114 - 22 Mar 2024
Cited by 6 | Viewed by 3004
Abstract
Misty Groupers (Hyporthodus mystacinus) are one of the largest and most geographically widespread grouper species and one of the few grouper species known to occur at depths greater than 200 m. However, aspects of their basic biology, behavior, and ecology remain [...] Read more.
Misty Groupers (Hyporthodus mystacinus) are one of the largest and most geographically widespread grouper species and one of the few grouper species known to occur at depths greater than 200 m. However, aspects of their basic biology, behavior, and ecology remain poorly understood, leaving significant gaps in our ability to evaluate their functional role throughout the vertical water column, as well as our understanding of their conservation needs in a changing ocean. Through in-situ video observation obtained using deep-sea landers in both The Bahamas and Cayman Islands over multiple years, we documented Misty Grouper occurrence up to 470 m depth in the mesopelagic zone. These observations provide a new depth range extension for the species and illuminate the potential importance of deep-water habitats for large grouper species in the wider Caribbean. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

16 pages, 6928 KB  
Article
Use of a 360-Degree Underwater Camera to Characterize Artificial Reef and Fish Aggregating Effects around Marine Energy Devices
by Lenaïg G. Hemery, Kailan F. Mackereth, Cailene M. Gunn and Edward B. Pablo
J. Mar. Sci. Eng. 2022, 10(5), 555; https://doi.org/10.3390/jmse10050555 - 19 Apr 2022
Cited by 16 | Viewed by 8896
Abstract
Marine energy devices must be attached to the seafloor by their foundations, pilings, or anchors, and will have other parts in the water column like the devices themselves, mooring lines, and power export cables running along the seafloor. The installation and presence of [...] Read more.
Marine energy devices must be attached to the seafloor by their foundations, pilings, or anchors, and will have other parts in the water column like the devices themselves, mooring lines, and power export cables running along the seafloor. The installation and presence of these artificial structures will create physical changes that can disrupt or create new habitats, and potentially alter the behavior of mobile organisms such as fish around a device by attracting them to these new artificial reefs and fish aggregating devices. In this study, we tested a new approach for monitoring fish activity around a marine energy device anchor: a 360-degree underwater camera to keep the target (a wave energy converter’s anchor) in the field of view of the camera. The camera was deployed in three configurations (hand-held, tripod, video lander) at sites with different hydrodynamics and underwater visibilities. The video lander was the best configuration: very stable, versatile, and easy to handle. The 360-degree field of view enabled observing and counting fishes, which were more abundant at dusk than dawn or noon, around the anchor. Despite remaining challenges, 360-degree cameras are useful tools for monitoring animal interactions with marine energy devices. Full article
Show Figures

Figure 1

19 pages, 6408 KB  
Article
KOSMOS: An Open Source Underwater Video Lander for Monitoring Coastal Fishes and Habitats
by Dominique Pelletier, Justin Rouxel, Olivier Fauvarque, David Hanon, Jean-Paul Gestalin, Morgann Lebot, Paul Dreano, Enora Furet, Morgan Tardivel, Yvan Le Bras, Coline Royaux and Guillaume Leguen
Sensors 2021, 21(22), 7724; https://doi.org/10.3390/s21227724 - 20 Nov 2021
Cited by 8 | Viewed by 6465
Abstract
Background: Monitoring the ecological status of coastal ecosystems is essential to track the consequences of anthropogenic pressures and assess conservation actions. Monitoring requires periodic measurements collected in situ, replicated over large areas and able to capture their spatial distribution over time. This means [...] Read more.
Background: Monitoring the ecological status of coastal ecosystems is essential to track the consequences of anthropogenic pressures and assess conservation actions. Monitoring requires periodic measurements collected in situ, replicated over large areas and able to capture their spatial distribution over time. This means developing tools and protocols that are cost-effective and provide consistent and high-quality data, which is a major challenge. A new tool and protocol with these capabilities for non-extractively assessing the status of fishes and benthic habitats is presented here: the KOSMOS 3.0 underwater video system. Methods: The KOSMOS 3.0 was conceived based on the pre-existing and successful STAVIRO lander, and developed within a digital fabrication laboratory where collective intelligence was contributed mostly voluntarily within a managed project. Our suite of mechanical, electrical, and software engineering skills were combined with ecological knowledge and field work experience. Results: Pool and aquarium tests of the KOSMOS 3.0 satisfied all the required technical specifications and operational testing. The prototype demonstrated high optical performance and high consistency with image data from the STAVIRO. The project’s outcomes are shared under a Creative Commons Attribution CC-BY-SA license. The low cost of a KOSMOS unit (~1400 €) makes multiple units affordable to modest research or monitoring budgets. Full article
Show Figures

Figure 1

Back to TopTop