Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = vectored immunoprophylaxis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2274 KiB  
Review
Anti-Drug Antibody Response to Therapeutic Antibodies and Potential Mitigation Strategies
by Erin L. Howard, Melanie M. Goens, Leonardo Susta, Ami Patel and Sarah K. Wootton
Biomedicines 2025, 13(2), 299; https://doi.org/10.3390/biomedicines13020299 - 26 Jan 2025
Cited by 4 | Viewed by 5955
Abstract
The development of anti-drug antibodies (ADAs) against therapeutic monoclonal antibodies (mAbs) poses significant challenges in the efficacy and safety of these treatments. ADAs can lead to adverse immune reactions, reduced drug efficacy, and increased clearance of therapeutic antibodies. This paper reviews the formation [...] Read more.
The development of anti-drug antibodies (ADAs) against therapeutic monoclonal antibodies (mAbs) poses significant challenges in the efficacy and safety of these treatments. ADAs can lead to adverse immune reactions, reduced drug efficacy, and increased clearance of therapeutic antibodies. This paper reviews the formation and mechanisms of ADAs, explores factors contributing to their development, and discusses potential strategies to mitigate ADA responses. Current and emerging strategies to reduce ADA formation include in silico and in vitro prediction tools, deimmunization techniques, antibody engineering, and various drug delivery methods. Additionally, novel approaches such as tolerogenic nanoparticles, oral tolerance, and in vivo delivery of therapeutic proteins via viral vectors and synthetic mRNA or DNA are explored. These strategies have the potential to enhance clinical outcomes of mAb therapies by minimizing immunogenicity and improving patient safety. Further research and innovation in this field are critical to overcoming the ongoing challenges of ADA responses in therapeutic antibody development. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Biomedicines (2nd Edition))
Show Figures

Figure 1

17 pages, 788 KiB  
Review
Recent Advancements in AAV-Vectored Immunoprophylaxis in the Nonhuman Primate Model
by Elena S. B. Campbell, Melanie M. Goens, Wenguang Cao, Brad Thompson, Leonardo Susta, Logan Banadyga and Sarah K. Wootton
Biomedicines 2023, 11(8), 2223; https://doi.org/10.3390/biomedicines11082223 - 8 Aug 2023
Cited by 5 | Viewed by 4155
Abstract
Monoclonal antibodies (mAbs) are important treatment modalities for preventing and treating infectious diseases, especially for those lacking prophylactic vaccines or effective therapies. Recent advances in mAb gene cloning from naturally infected or immunized individuals has led to the development of highly potent human [...] Read more.
Monoclonal antibodies (mAbs) are important treatment modalities for preventing and treating infectious diseases, especially for those lacking prophylactic vaccines or effective therapies. Recent advances in mAb gene cloning from naturally infected or immunized individuals has led to the development of highly potent human mAbs against a wide range of human and animal pathogens. While effective, the serum half-lives of mAbs are quite variable, with single administrations usually resulting in short-term protection, requiring repeated doses to maintain therapeutic concentrations for extended periods of time. Moreover, due to their limited time in circulation, mAb therapies are rarely given prophylactically; instead, they are generally administered therapeutically after the onset of symptoms, thus preventing mortality, but not morbidity. Adeno-associated virus (AAV) vectors have an established record of high-efficiency in vivo gene transfer in a variety of animal models and humans. When delivered to post-mitotic tissues such as skeletal muscle, brain, and heart, or to organs in which cells turn over slowly, such as the liver and lungs, AAV vector genomes assume the form of episomal concatemers that direct transgene expression, often for the lifetime of the cell. Based on these attributes, many research groups have explored AAV-vectored delivery of highly potent mAb genes as a strategy to enable long-term expression of therapeutic mAbs directly in vivo following intramuscular or intranasal administration. However, clinical trials in humans and studies in nonhuman primates (NHPs) indicate that while AAVs are a powerful and promising platform for vectored immunoprophylaxis (VIP), further optimization is needed to decrease anti-drug antibody (ADA) and anti-capsid antibody responses, ultimately leading to increased serum transgene expression levels and improved therapeutic efficacy. The following review will summarize the current landscape of AAV VIP in NHP models, with an emphasis on vector and transgene design as well as general delivery system optimization. In addition, major obstacles to AAV VIP, along with implications for clinical translation, will be discussed. Full article
(This article belongs to the Special Issue Therapeutic Antibodies against Infectious Diseases)
Show Figures

Figure 1

20 pages, 401 KiB  
Review
Overcoming Barriers to Preventing and Treating P. aeruginosa Infections Using AAV Vectored Immunoprophylaxis
by Jordyn A. Lopes, Amira D. Rghei, Brad Thompson, Leonardo Susta, Cezar M. Khursigara and Sarah K. Wootton
Biomedicines 2022, 10(12), 3162; https://doi.org/10.3390/biomedicines10123162 - 7 Dec 2022
Cited by 7 | Viewed by 2687
Abstract
Pseudomonas aeruginosa is a bacterial pathogen of global concern and is responsible for 10–15% of nosocomial infections worldwide. This opportunistic bacterial pathogen is known to cause serious complications in immunocompromised patients and is notably the leading cause of morbidity and mortality in patients [...] Read more.
Pseudomonas aeruginosa is a bacterial pathogen of global concern and is responsible for 10–15% of nosocomial infections worldwide. This opportunistic bacterial pathogen is known to cause serious complications in immunocompromised patients and is notably the leading cause of morbidity and mortality in patients suffering from cystic fibrosis. Currently, the only line of defense against P. aeruginosa infections is antibiotic treatment. Due to the acquired and adaptive resistance mechanisms of this pathogen, the prevalence of multidrug resistant P. aeruginosa strains has increased, presenting a major problem in healthcare settings. To date, there are no approved licensed vaccines to protect against P. aeruginosa infections, prompting the urgent need alternative treatment options. An alternative to traditional vaccines is vectored immunoprophylaxis (VIP), which utilizes a safe and effective adeno-associated virus (AAV) gene therapy vector to produce sustained levels of therapeutic monoclonal antibodies (mAbs) in vivo from a single intramuscular injection. In this review, we will provide an overview of P. aeruginosa biology and key mechanisms of pathogenesis, discuss current and emerging treatment strategies for P. aeruginosa infections and highlight AAV-VIP as a promising novel therapeutic platform. Full article
(This article belongs to the Special Issue Advances and Challenges in the Study of Host-Pathogen Interactions)
14 pages, 1413 KiB  
Article
Safety and Tolerability of the Adeno-Associated Virus Vector, AAV6.2FF, Expressing a Monoclonal Antibody in Murine and Ovine Animal Models
by Amira D. Rghei, Laura P. van Lieshout, Benjamin M. McLeod, Yanlong Pei, Jordyn A. Lopes, Nicole Zielinska, Enzo M. Baracuhy, Brenna A. Y. Stevens, Sylvia P. Thomas, Jacob G. E. Yates, Bryce M. Warner, Darwyn Kobasa, Hugues Fausther-Bovendo, Gary P. Kobinger, Khalil Karimi, Brad Thompson, Byram W. Bridle, Leonardo Susta and Sarah K. Wootton
Biomedicines 2021, 9(9), 1186; https://doi.org/10.3390/biomedicines9091186 - 9 Sep 2021
Cited by 9 | Viewed by 4602
Abstract
Adeno-associated virus (AAV) vector mediated expression of therapeutic monoclonal antibodies is an alternative strategy to traditional vaccination to generate immunity in immunosuppressed or immunosenescent individuals. In this study, we vectorized a human monoclonal antibody (31C2) directed against the spike protein of SARS-CoV-2 and [...] Read more.
Adeno-associated virus (AAV) vector mediated expression of therapeutic monoclonal antibodies is an alternative strategy to traditional vaccination to generate immunity in immunosuppressed or immunosenescent individuals. In this study, we vectorized a human monoclonal antibody (31C2) directed against the spike protein of SARS-CoV-2 and determined the safety profile of this AAV vector in mice and sheep as a large animal model. In both studies, plasma biochemical parameters and hematology were comparable to untreated controls. Except for mild myositis at the site of injection, none of the major organs revealed any signs of toxicity. AAV-mediated human IgG expression increased steadily throughout the 28-day study in sheep, resulting in peak concentrations of 21.4–46.7 µg/ mL, demonstrating practical scale up from rodent to large animal models. This alternative approach to immunity is worth further exploration after this demonstration of safety, tolerability, and scalability in a large animal model. Full article
(This article belongs to the Special Issue Viral Vectors for Immunotherapy: Vaccines and Cancer Immunotherapy)
Show Figures

Figure 1

25 pages, 880 KiB  
Review
AAV Vectored Immunoprophylaxis for Filovirus Infections
by Amira D. Rghei, Laura P. van Lieshout, Lisa A. Santry, Matthew M. Guilleman, Sylvia P. Thomas, Leonardo Susta, Khalil Karimi, Byram W. Bridle and Sarah K. Wootton
Trop. Med. Infect. Dis. 2020, 5(4), 169; https://doi.org/10.3390/tropicalmed5040169 - 9 Nov 2020
Cited by 12 | Viewed by 5089
Abstract
Filoviruses are among the deadliest infectious agents known to man, causing severe hemorrhagic fever, with up to 90% fatality rates. The 2014 Ebola outbreak in West Africa resulted in over 28,000 infections, demonstrating the large-scale human health and economic impact generated by filoviruses. [...] Read more.
Filoviruses are among the deadliest infectious agents known to man, causing severe hemorrhagic fever, with up to 90% fatality rates. The 2014 Ebola outbreak in West Africa resulted in over 28,000 infections, demonstrating the large-scale human health and economic impact generated by filoviruses. Zaire ebolavirus is responsible for the greatest number of deaths to date and consequently there is now an approved vaccine, Ervebo, while other filovirus species have similar epidemic potential and remain without effective vaccines. Recent clinical success of REGN-EB3 and mAb-114 monoclonal antibody (mAb)-based therapies supports further investigation of this treatment approach for other filoviruses. While efficacious, protection from passive mAb therapies is short-lived, requiring repeat dosing to maintain therapeutic concentrations. An alternative strategy is vectored immunoprophylaxis (VIP), which utilizes an adeno-associated virus (AAV) vector to generate sustained expression of selected mAbs directly in vivo. This approach takes advantage of validated mAb development and enables vectorization of the top candidates to provide long-term immunity. In this review, we summarize the history of filovirus outbreaks, mAb-based therapeutics, and highlight promising AAV vectorized approaches to providing immunity against filoviruses where vaccines are not yet available. Full article
Show Figures

Figure 1

14 pages, 3013 KiB  
Review
Nanobodies that Neutralize HIV
by Robin A. Weiss and C. Theo Verrips
Vaccines 2019, 7(3), 77; https://doi.org/10.3390/vaccines7030077 - 31 Jul 2019
Cited by 49 | Viewed by 8869
Abstract
Nanobodies or VHH (variable domains of heavy-chain only antibodies) are derived from camelid species such as llamas and camels. Nanobodies isolated and selected through phage display can neutralize a broad range of human immunodeficiency virus type 1 (HIV-1) strains. Nanobodies fit into canyons [...] Read more.
Nanobodies or VHH (variable domains of heavy-chain only antibodies) are derived from camelid species such as llamas and camels. Nanobodies isolated and selected through phage display can neutralize a broad range of human immunodeficiency virus type 1 (HIV-1) strains. Nanobodies fit into canyons on the HIV envelope that may not be accessible to IgG (immunoglobulin G) containing both heavy and light chains, and they tend to have long CDR3 (complementarity-determining region 3) loops that further enhance recognition of otherwise cryptic epitopes. Nanobodies are readily expressed at high levels in bacteria and yeast, as well as by viral vectors, and they form relatively stable, heat-resistant molecules. Nanobodies can be linked to human Fc chains to gain immune effector functions. Bivalent and trivalent nanobodies recognizing the same or distinct epitopes on the envelope glycoproteins, gp120 and gp41, greatly increase the potency of HIV-1 neutralization. Nanobodies have potential applications for HIV-1 diagnostics, vaccine design, microbicides, immunoprophylaxis, and immunotherapy. Full article
(This article belongs to the Special Issue Advances in Antibody-based HIV-1 Vaccine Development)
Show Figures

Figure 1

20 pages, 618 KiB  
Review
Passive Immunization against HIV/AIDS by Antibody Gene Transfer
by Lili Yang and Pin Wang
Viruses 2014, 6(2), 428-447; https://doi.org/10.3390/v6020428 - 27 Jan 2014
Cited by 14 | Viewed by 13365
Abstract
Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored [...] Read more.
Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics. Full article
(This article belongs to the Special Issue Gene Therapy for Retroviral Infections)
Show Figures

Graphical abstract

Back to TopTop