Overcoming Barriers to Preventing and Treating P. aeruginosa Infections Using AAV Vectored Immunoprophylaxis
Abstract
:1. Introduction
2. P. aeruginosa
2.1. History of Hospital Acquired P. aeruginosa Infection
2.2. Taxonomy
2.3. Molecular Biology and Structural Characteristics of P. aeruginosa
2.4. Mechanisms of Pathogenesis
2.4.1. Lipopolysaccharide as a Virulence Factor
2.4.2. Outer Membrane Vesicles as Virulence Factors
2.4.3. Role of Biofilm Formation
2.4.4. Mechanisms of Quorum Sensing
2.4.5. Secretion Systems and Their Integral Role in Virulence
3. P. aeruginosa and Cystic Fibrosis
4. Pathogen-Host Interactions in P. aeruginosa Infections
5. Current Treatment Strategies for P. aeruginosa
5.1. Antibiotic Treatment Strategies Currently Available
5.2. Increasing Antimicrobial Resistance of P. aeruginosa
5.3. Antimicrobial Resistance of P. aeruginosa in a Clinical Context
6. P. aeruginosa Specific mAbs
6.1. Murine Derived Antibodies
6.2. Human Derived Antibodies
6.3. Bispecific Monoclonal Antibody Therapy
6.4. Clinical Testing of Anti-P. aeruginosa mAbs
Name/Antibody Compound | Antigenic Target | Clinical Trial | Results | Reference |
---|---|---|---|---|
Panobacumab (AR-101, KBPA-101) Human IgM mAb | LPS (O11 serotype) | Phase 1/2 (NCT00851435): Safety and tolerability in patients with hospital acquired pneumonia caused by serotype O11 P. aeruginosa | Phase 2a completed. Panobacumab adjunctive immunotherapy may improve clinical outcome in a shorter time if patients receive the full treatment. | [83] |
MEDI3902 Bispecific human IgG mAb | PcrV and Psl | Phase 1 (NCT02255760): Dose escalation study of MEDI3902 evaluating safety, pharmokinetics, antidrug antibody responses, ex vivo anticytotoxicity and opsonophagocytic killing activities in healthy adults Phase 2 (NCT02696902): Efficacy and safety of MEDI3902 in mechanically ventilated participants for the prevention of nosocomial P. aeruginosa pneumonia | Endpoint not met. A single IV dose of MEDI3902 did not achieve primary efficacy endpoint of reduction in PA pneumonia | [89,91] |
Aerucin (AR-105) Human IgG mAb | Alginate (O11 serotpye) | Phase 1 (NCT02486770): Safety evaluation of Aerucin in healthy individuals Phase 2 (NCT03027609): Efficacy, safety, and PK evaluation of Aerucin in combination with antibiotic treatment in P. aeruginosa ventilator-associated pneumonia (VAP) patients | Endpoint not met. No difference noticed between Aerucin and placebo patient groups for treatment of P. aeruginosa. Single IV infusion of Aerucin VAP patients. | [85] |
KB001-A Humanized pegylated Fab’ fragment | PcrV | Phase 1/2 (NCT01695343): Evaluation of the effect of KB001-A on time-to-need for antibiotic treatment of CF patients | Endpoint not met due to lack of clinical efficacy. KB001-A was not associated with an increased time to need for antibiotics | [92] |
KB001 Humanized IgG Fab’ fragment | PcrV | Phase 1/2 (NCT00691587): Safety and pharmacokinetics (PK) of KB001 in mechanically ventilated ICU patients colonized with P. aeruginosa. Phase 1/2 (NCT00638365): Dose escalation study of KB001 in CF patients colonized with P. aeruginosa. | Endpoint not met. No signify can’t differences in the placebo group and the PA colonized CF patients. | [84] |
PsAer-IgY Avian IgY pAb | Flagellin | (Phase 1/2) NCT00633191: Study of anti-pseudomonas IgY in prevention of recurrence of P. aeruginosa infections in CF Patients. Phase 3 (NCT01455675): Efficacy Study of IgY in Cystic Fibrosis Patients | Clinical efficacy results were unclear. IgY antibodies were present in the oral cavity for over 24 h after oral administration. | [88] |
7. Prospects for AAV-Mediated Monoclonal Antibody Expression for Prevention of P. aeruginosa Infections
7.1. AAV Vectored Immunoprophylaxis (VIP)
7.2. Clinical Relevance of AAV VIP
7.3. Benefits of AAV VIP
7.4. Caveats of AAV-VIP
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Reig, S.; Le Gouellec, A.; Bleves, S. What Is New in the Anti–Pseudomonas aeruginosa Clinical Development Pipeline Since the 2017 WHO Alert? Front. Cell. Infect. Microbiol. 2022, 12, 909731. [Google Scholar] [CrossRef] [PubMed]
- Scotet, V.; L’Hostis, C.; Férec, C. The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery. Genes 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.J.; Okuda, K.; Edwards, C.E.; Martinez, D.R.; Asakura, T.; Dinnon, K.H.; Kato, T.; Lee, R.E.; Yount, B.L.; Mascenik, T.M.; et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020, 182, 429–446.e14. [Google Scholar] [CrossRef] [PubMed]
- Nixon, G.M.; Armstrong, D.S.; Carzino, R.; Carlin, J.B.; Olinsky, A.; Robertson, C.F.; Grimwood, K. Clinical Outcome after Early Pseudomonas aeruginosa Infection in Cystic Fibrosis. J. Pediatr. 2001, 138, 699–704. [Google Scholar] [CrossRef]
- Zemanick, E.T.; Bell, S.C. Prevention of Chronic Infection with Pseudomonas aeruginosa Infection in Cystic Fibrosis. Curr. Opin. Pulm. Med. 2019, 25, 636–645. [Google Scholar] [CrossRef]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L. Chronic general infection with the bacillus pyocyaneus. Ann. Surg. 1916, 64, 195–202. [Google Scholar] [CrossRef]
- Harris, A.A.; Goodman, L.; Levin, S. Community-Acquired Pseudomonas aeruginosa Pneumonia Associated with the Use of a Home Humidifier. Case Rep. 1984, 141, 521–523. [Google Scholar]
- Pollack, M. Principles and Practice of Infectious Diseases, 5th ed.; Churchill Livingstone: London, UK, 2000. [Google Scholar]
- Stone, W.P. Economic Burden of Healthcare-Associated Infections: An American Perspective. Expert Rev. Pharmacoecon. Outcomes Res. 2010, 9, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.A.; Baig, F.K.; Mehboob, R. Nosocomial Infections: Epidemiology, Prevention, Control and Surveillance. Asian Pac. J. Trop. Biomed. 2017, 7, 478–482. [Google Scholar] [CrossRef]
- Spagnolo, A.M.; Sartini, M.; Cristina, M.L. Pseudomonas aeruginosa in the Healthcare Facility Setting. Rev. Med. Microbiol. 2021, 32, 169–175. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Hooper, D.C. Hospital-Acquired Infections Due to Gram-Negative Bacteria. N. Engl. J. Med. 2010, 362, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- National Nosocomial Infections Surveillance (NNIS) System Report, Data Summary from October 1986–April 1998, Issued June 1998. Am. J. Infect. Control 1998, 26, 522–533. [CrossRef] [PubMed]
- Croughs, P.D.; Li, B.; Hoogkamp-Korstanje, J.A.A.; Stobberingh, E. Thirteen Years of Antibiotic Susceptibility Surveillance of Pseudomonas aeruginosa from Intensive Care Units and Urology Services in the Netherlands on Behalf of the Antibiotic Resistance Surveillance Group. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 283–288. [Google Scholar] [CrossRef]
- Klockgether, J.; Cramer, N.; Wiehlmann, L.; Davenport, C.F.; Tümmler, B. Pseudomonas aeruginosa Genomic Structure and Diversity. Front. Microbiol. 2011, 2, 150. [Google Scholar] [CrossRef] [Green Version]
- Girard, L.; Lood, C.; Höfte, M.; Vandamme, P.; Rokni-Zadeh, H.; van Noort, V.; Lavigne, R.; De Mot, R. The Ever-Expanding Pseudomonas Genus: Description of 43 New Species and Partition of the Pseudomonas putida Group. Microorganisms 2021, 9, 1766. [Google Scholar] [CrossRef]
- Diggle, S.P.; Whiteley, M. Microbe Profile: Pseudomonas aeruginosa: Opportunistic Pathogen and Lab Rat. Microbiology 2020, 166, 30–33. [Google Scholar] [CrossRef]
- Hesse, C.; Schulz, F.; Bull, C.T.; Shaffer, B.T.; Yan, Q.; Shapiro, N.; Hassan, K.A.; Varghese, N.; Elbourne, L.D.H.; Paulsen, I.T.; et al. Genome-Based Evolutionary History of Pseudomonas spp. Environ. Microbiol. 2018, 20, 2142–2159. [Google Scholar] [CrossRef]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Ozer, E.A.; Allen, J.P.; Hauser, A.R. Characterization of the Core and Accessory Genomes of Pseudomonas aeruginosa Using Bioinformatic Tools Spine and AGEnt. BMC Genom. 2014, 15, 737. [Google Scholar] [CrossRef]
- He, J.; Baldini, R.L.; Déziel, E.; Saucier, M.; Zhang, Q.; Liberati, N.T.; Lee, D.; Urbach, J.; Goodman, H.M.; Rahme, L.G. The Broad Host Range Pathogen Pseudomonas aeruginosa Strain PA14 Carries Two Pathogenicity Islands Harboring Plant and Animal Virulence Genes. Proc. Natl. Acad. Sci. USA 2004, 101, 2530–2535. [Google Scholar] [CrossRef] [Green Version]
- Huszczynski, S.M.; Lam, J.S.; Khursigara, C.M. The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens 2020, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Iglewski, B.H. Pseudomonas. In Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston TX, USA, 1996; ISBN 978-0-9631172-1-2. [Google Scholar]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, Virulence Factors, Antibiotic Resistance, Interaction with Host, Technology Advances and Emerging Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- Augustyniak, D.; Olszak, T.; Drulis-Kawa, Z. Outer Membrane Vesicles (OMVs) of Pseudomonas aeruginosa Provide Passive Resistance but Not Sensitization to LPS-Specific Phages. Viruses 2022, 14, 121. [Google Scholar] [CrossRef]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The Importance of the Viable but Non-Culturable State in Human Bacterial Pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.B.; Bassler, B.L. Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.S.; Iglewski, B.H.P. Aeruginosa Quorum-Sensing Systems and Virulence. Curr. Opin. Microbiol. 2003, 6, 56–60. [Google Scholar] [CrossRef]
- Venturi, V. Regulation of Quorum Sensing in Pseudomonas. FEMS Microbiol. Rev. 2006, 30, 274–291. [Google Scholar] [CrossRef] [Green Version]
- Bleves, S.; Viarre, V.; Salacha, R.; Michel, G.P.F.; Filloux, A.; Voulhoux, R. Protein Secretion Systems in Pseudomonas aeruginosa: A Wealth of Pathogenic Weapons. Int. J. Med. Microbiol. 2010, 300, 534–543. [Google Scholar] [CrossRef]
- Two-Step and One-Step Secretion Mechanisms in Gram-Negative Bacteria: Contrasting the Type IV Secretion System and the Chaperone-Usher Pathway of Pilus Biogenesis. Biochem. J. 2010, 425, 475–488. Available online: https://portlandpress.com/biochemj/article/425/3/475/44826/Two-step-and-one-step-secretion-mechanisms-in-Gram (accessed on 4 July 2022). [CrossRef] [PubMed] [Green Version]
- Pollack, M. The Role of Exotoxin A in Pseudomonas Disease and Immunity. Clin. Infect. Dis. 1983, 5, S979–S984. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef] [PubMed]
- Santajit, S.; Seesuay, W.; Mahasongkram, K.; Sookrung, N.; Ampawong, S.; Reamtong, O.; Diraphat, P.; Chaicumpa, W.; Indrawattana, N. Human Single-Chain Antibodies That Neutralize Pseudomonas aeruginosa-Exotoxin A-Mediated Cellular Apoptosis. Sci. Rep. 2019, 9, 14928. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Balachandran, P. Role of Pseudomonas aeruginosa Type III Effectors in Disease. Curr. Opin. Microbiol. 2009, 12, 61–66. [Google Scholar] [CrossRef]
- Thanabalasuriar, A.; Surewaard, B.G.J.; Willson, M.E.; Neupane, A.S.; Stover, C.K.; Warrener, P.; Wilson, G.; Keller, A.E.; Sellman, B.R.; DiGiandomenico, A.; et al. Bispecific Antibody Targets Multiple Pseudomonas aeruginosa Evasion Mechanisms in the Lung Vasculature. J. Clin. Investig. 2017, 127, 2249–2261. [Google Scholar] [CrossRef]
- Shi, Q.; Huang, C.; Xiao, T.; Wu, Z.; Xiao, Y. A Retrospective Analysis of Pseudomonas aeruginosa Bloodstream Infections: Prevalence, Risk Factors, and Outcome in Carbapenem-Susceptible and -Non-Susceptible Infections. Antimicrob. Resist. Infect. Control 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Jin, Y.; Bai, F.; Jin, S. Chapter 41—Pseudomonas aeruginosa. In Molecular Medical Microbiology, 2nd ed.; Tang, Y.-W., Sussman, M., Liu, D., Poxton, I., Schwartzman, J., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 753–767. ISBN 978-0-12-397169-2. [Google Scholar]
- Poole, K. Pseudomonas aeruginosa: Resistance to the Max. Front. Microbiol. 2011, 2, 65. [Google Scholar] [CrossRef] [Green Version]
- Douglas, T.A.; Brennan, S.; Gard, S.; Berry, L.; Gangell, C.; Stick, S.M.; Clements, B.S.; Sly, P.D. Acquisition and Eradication of P. Aeruginosa in Young Children with Cystic Fibrosis. Eur. Respir. J. 2009, 33, 305–311. [Google Scholar] [CrossRef] [Green Version]
- The Determinants of Survival among Adults with Cystic Fibrosis—A Cohort Study. J. Physiol. Anthr. 2021, 40, 1–9. Available online: https://jphysiolanthropol.biomedcentral.com/articles/10.1186/s40101-021-00269-7 (accessed on 3 August 2022).
- Sindeldecker, D.; Stoodley, P. The Many Antibiotic Resistance and Tolerance Strategies of Pseudomonas aeruginosa. Biofilm 2021, 3, 100056. [Google Scholar] [CrossRef]
- Lin, C.K.; Kazmierczak, B.I. Inflammation: A Double-Edged Sword in the Response to Pseudomonas aeruginosa Infection. J. Innate Immun. 2017, 9, 250–261. [Google Scholar] [CrossRef]
- Kharazmi, A. Mechanisms Involved in the Evasion of the Host Defence by Pseudomonas aeruginosa. Immunol. Lett. 1991, 30, 201–205. [Google Scholar] [CrossRef]
- Faure, E.; Kwong, K.; Nguyen, D. Pseudomonas aeruginosa in Chronic Lung Infections: How to Adapt within the Host? Front. Immunol. 2018, 9, 2416. [Google Scholar] [CrossRef] [Green Version]
- Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New Insights into Pathogenesis and Host Defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Rada, B. Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis. Pathogens 2017, 6, 10. [Google Scholar] [CrossRef]
- González, J.F.; Hahn, M.M.; Gunn, J.S. Chronic Biofilm-Based Infections: Skewing of the Immune Response. Pathog. Dis. 2018, 76, fty023. [Google Scholar] [CrossRef]
- Moser, C.; Jensen, P.O.; Kobayashi, O.; Hougen, H.P.; Song, Z.; Rygaard, J.; Kharazmi, A.; Hoby, N. Improved Outcome of Chronic Pseudomonas aeruginosa Lung Infection Is Associated with Induction of a Th1-Dominated Cytokine Response. Clin. Exp. Immunol. 2002, 127, 206–213. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to Manage Pseudomonas aeruginosa Infections. Drugs Context 2018, 7, 1–18. [Google Scholar] [CrossRef]
- Public Agency of Health Canada. Pathogen Aafety Data Sheets: Nfectious Substances-Pseudomonas spp. 2011. Available online: www.canada.ca. (accessed on 1 November 2022).
- Jangra, V.; Sharma, N.; Chhillar, A.K. Therapeutic Approaches for Combating Pseudomonas aeruginosa Infections. Microbes Infect. 2022, 24, 104950. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-H.; Hu, Z.-Q. β-Lactamases Identified in Clinical Isolates of Pseudomonas aeruginosa. Crit. Rev. Microbiol. 2010, 36, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.S.; Dwibedy, S.K.; Padhy, I. Polymyxins, the Last-Resort Antibiotics: Mode of Action, Resistance Emergence, and Potential Solutions. J. Biosci. 2021, 46, 85. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; WHO: Geneva, Switzerland, 2017. Available online: www.who.int.com (accessed on 21 July 2022).
- Raj KC, H.; Gilmore, D.F.; Alam, M.A. Development of 4-[4-(Anilinomethyl)-3-Phenyl-Pyrazol-1-Yl] Benzoic Acid Derivatives as Potent Anti-Staphylococci and Anti-Enterococci Agents. Antibiotics 2022, 11, 939. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Ferrer-Espada, R.; Shahrour, H.; Pitts, B.; Stewart, P.S.; Sánchez-Gómez, S.; Martínez-de-Tejada, G. A Permeability-Increasing Drug Synergizes with Bacterial Efflux Pump Inhibitors and Restores Susceptibility to Antibiotics in Multi-Drug Resistant Pseudomonas aeruginosa Strains. Sci. Rep. 2019, 9, 3452. [Google Scholar] [CrossRef] [Green Version]
- Pachori, P.; Gothalwal, R.; Gandhi, P. Emergence of Antibiotic Resistance Pseudomonas aeruginosa in Intensive Care Unit; a Critical Review. Genes Dis. 2019, 6, 109–119. [Google Scholar] [CrossRef]
- Sainz-Mejías, M.; Jurado-Martín, I.; McClean, S. Understanding Pseudomonas aeruginosa–Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020, 9, 2617. [Google Scholar] [CrossRef]
- Harvath, L.; Andersen, B.R.; Amirault, H.J. Passive Immunity against Pseudomonas Sepsis during Granulocytopenia. Infect. Immun. 1976, 14, 1151–1155. [Google Scholar] [CrossRef] [Green Version]
- Sawa, T.; Ito, E.; Nguyen, V.H.; Haight, M. Anti-PcrV Antibody Strategies against Virulent Pseudomonas aeruginosa. Hum. Vaccines Immunother. 2014, 10, 2843–2852. [Google Scholar] [CrossRef]
- Frank, D.W.; Vallis, A.; Wiener-Kronish, J.P.; Roy-Burman, A.; Spack, E.G.; Mullaney, B.P.; Megdoud, M.; Marks, J.D.; Fritz, R.; Sawa, T. Generation and Characterization of a Protective Monoclonal Antibody to Pseudomonas aeruginosa PcrV. J. Infect. Dis. 2002, 186, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Hemachandra, S.; Kamboj, K.; Copfer, J.; Pier, G.; Green, L.L.; Schreiber, J.R. Human Monoclonal Antibodies against Pseudomonas aeruginosa Lipopolysaccharide Derived from Transgenic Mice Containing Megabase Human Immunoglobulin Loci Are Opsonic and Protective against Fatal Pseudomonas Sepsis. Infect. Immun. 2001, 69, 2223–2229. [Google Scholar] [CrossRef] [Green Version]
- Zweerink, H.J.; DetoUa, L.J.; Gammon, M.C.; Hutchison, C.F.; Puckett, J.M.; Sigal, N.H. A Human Monoclonal Antibody that Protects Mice against Pseudomonas-Induced Pneumonia. J. Infect. Dis. 1990, 162, 254–257. [Google Scholar] [CrossRef]
- Sawada, S.; Kawamura, T.; Masuho, Y.; Tomibe, K. Characterization of a Human Monoclonal Antibody to Lipopolysaccharides of Pseudomonas aeruginosa Serotype 5: A Possible Candidate as an Immunotherapeutic Agent for Infections with P. aeruginosa. J. Infect. Dis. 1985, 152, 965–970. [Google Scholar] [CrossRef]
- Pier, G.B.; Boyer, D.; Preston, M.; Coleman, F.T.; Llosa, N.; Mueschenborn-Koglin, S.; Theilacker, C.; Goldenberg, H.; Uchin, J.; Priebe, G.P.; et al. Human Monoclonal Antibodies to Pseudomonas aeruginosa Alginate That Protect against Infection by Both Mucoid and Nonmucoid Strains. J. Immunol. 2004, 173, 5671–5678. [Google Scholar] [CrossRef] [Green Version]
- DiGiandomenico, A.; Warrener, P.; Hamilton, M.; Guillard, S.; Ravn, P.; Minter, R.; Camara, M.M.; Venkatraman, V.; Macgill, R.S.; Lin, J.; et al. Identification of Broadly Protective Human Antibodies to Pseudomonas aeruginosa Exopolysaccharide Psl by Phenotypic Screening. J. Exp. Med. 2012, 209, 1273–1287. [Google Scholar] [CrossRef] [Green Version]
- Warrener, P.; Varkey, R.; Bonnell, J.C.; DiGiandomenico, A.; Camara, M.; Cook, K.; Peng, L.; Zha, J.; Chowdury, P.; Sellman, B.; et al. A Novel Anti-PcrV Antibody Providing Enhanced Protection against Pseudomonas aeruginosa in Multiple Animal Infection Models. Antimicrob. Agents Chemother. 2014, 58, 4384–4391. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Mo, Y.; Tang, M.; Shen, J.; Qi, Y.; Zhao, W.; Huang, Y.; Xu, Y.; Qian, C. Bispecific Antibodies: From Research to Clinical Application. Front. Immunol. 2021, 12, 626616. [Google Scholar] [CrossRef] [PubMed]
- Humanigen, Inc. A Phase 2, Randomized, Double-Blind, Placebo-Controlled, Repeat-Dose Study of KB001-A in Subjects with Cystic Fibrosis Infected with Pseudomonas aeruginosa; Humanigen, Inc.: Burlingame, CA, USA, 2015. Available online: clinicaltrials.gov (accessed on 20 November 2022).
- Zhu, M.; Wu, B.; Brandl, C.; Johnson, J.; Wolf, A.; Chow, A.; Doshi, S. Blinatumomab, a Bispecific T-Cell Engager (BiTE®) for CD-19 Targeted Cancer Immunotherapy: Clinical Pharmacology and Its Implications. Clin. Pharmacokinet. 2016, 55, 1271–1288. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Amivantamab: First Approval. Drugs 2021, 81, 1349–1353. [Google Scholar] [CrossRef] [PubMed]
- Lingamaiah, D.; Ns, S.; Murti, K.; Singh, S.; Ravichandiran, V.; Dhingra, S. Emicizumab: An FDA-Approved Monoclonal Antibody in the Treatment of Hemophilia A. Curr. Pharmacol. Rep. 2022, 8, 121–129. [Google Scholar] [CrossRef]
- Shirley, M. Faricimab: First Approval. Drugs 2022, 82, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Grebinoski, S.; Gocher-Demske, A.M.; Vignali, D.A.A. Catch and Release: Freeing up PD-L1 Ameliorates Autoimmunity. Nat. Immunol. 2022, 23, 344–346. [Google Scholar] [CrossRef]
- DiGiandomenico, A.; Keller, A.E.; Gao, C.; Rainey, G.J.; Warrener, P.; Camara, M.M.; Bonnell, J.; Fleming, R.; Bezabeh, B.; Dimasi, N.; et al. A Multifunctional Bispecific Antibody Protects against Pseudomonas aeruginosa. Sci. Transl. Med. 2014, 6, 262ra155. [Google Scholar] [CrossRef]
- Kenta Biotech, Ltd. Safety and Pharmacokinetics of KBPA-101 in Hospital Acquired Pneumonia Caused by O11 Pseudomonas Aeruginosa; Kenta Biotech, Ltd.: Basal, Switzerland, 2009. Available online: clinicaltrials.gov (accessed on 30 October 2022).
- Milla, C.E.; Chmiel, J.F.; Accurso, F.J.; VanDevanter, D.R.; Konstan, M.W.; Yarranton, G.; Geller, D.E.; KB001 Study Group. Anti-PcrV Antibody in Cystic Fibrosis: A Novel Approach Targeting Pseudomonas aeruginosa Airway Infection: An Anti-Pseudomonal Antibody Fragment in CF. Pediatr. Pulmonol. 2014, 49, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Sousa, S.A.; Seixas, A.M.M.; Marques, J.M.M.; Leitão, J.H. Immunization and Immunotherapy Approaches against Pseudomonas aeruginosa and Burkholderia Cepacia Complex Infections. Vaccines 2021, 9, 670. [Google Scholar] [CrossRef]
- Mindt, B.C.; DiGiandomenico, A. Microbiome Modulation as a Novel Strategy to Treat and Prevent Respiratory Infections. Antibiotics 2022, 11, 474. [Google Scholar] [CrossRef]
- Thomsen, K.; Christophersen, L.; Jensen, P.Ø.; Bjarnsholt, T.; Moser, C.; Høiby, N. Anti-Pseudomonas aeruginosa IgY Antibodies Promote Bacterial Opsonization and Augment the Phagocytic Activity of Polymorphonuclear Neutrophils. Hum. Vaccines Immunother. 2016, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mukoviszidose Institut gGmbH. Efficacy Study of IgY (Antibody against Pseudomonas) in Cystic Fibrosis Patients (PsAer-IgY); Mukoviszidose Institut gGmbH: Berlin, Germany, 2017; Available online: https://cordis.europa.eu/project/id/261095/reporting (accessed on 4 December 2022).
- Ali, S.O.; Yu, X.Q.; Robbie, G.J.; Wu, Y.; Shoemaker, K.; Yu, L.; DiGiandomenico, A.; Keller, A.E.; Anude, C.; Hernandez-Illas, M.; et al. Phase 1 Study of MEDI3902, an Investigational Anti–Pseudomonas aeruginosa PcrV and Psl Bispecific Human Monoclonal Antibody, in Healthy Adults. Clin. Microbiol. Infect. 2019, 25, 629.e1–629.e6. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, H.; Gomos, J.; Berns, K.I.; Falck-Pedersen, E. Adeno-Associated Virus Site-Specific Integration and AAVS1 Disruption. J. Virol. 2004, 78, 7874–7882. [Google Scholar] [CrossRef]
- Chastre, J.; François, B.; Bourgeois, M.; Komnos, A.; Ferrer, R.; Rahav, G.; De Schryver, N.; Lepape, A.; Koksal, I.; Luyt, C.-E.; et al. 635. Efficacy, Pharmacokinetics (PK), and Safety Profile of MEDI3902, an Anti-Pseudomonas aeruginosa Bispecific Human Monoclonal Antibody in Mechanically Ventilated Intensive Care Unit Patients; Results of the Phase 2 EVADE Study Conducted by the Public-Private COMBACTE-MAGNET Consortium in the Innovative Medicines Initiative (IMI) Program. Open Forum Infect. Dis. 2020, 7, S377–S378. [Google Scholar] [CrossRef]
- Humanigen, Inc. Study to Evaluate the Effect of KB001-A on Time-to-Need for Antibiotic Treatment (KB001-A); Humanigen, Inc.: Burlingame, CA, USA, 2015. Available online: clinicaltrials.gov (accessed on 30 October 2022).
- Verdera, H.C.; Kuranda, K.; Mingozzi, F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol. Ther. 2020, 28, 723–746. [Google Scholar] [CrossRef]
- Zhao, Z.; Anselmo, A.C.; Mitragotri, S. Viral vector-based Gene Therapies in the Clinic. Bioeng. Transl. Med. 2022, 7, 10258. [Google Scholar] [CrossRef]
- Buchlis, G.; Podsakoff, G.M.; Radu, A.; Hawk, S.M.; Flake, A.W.; Mingozzi, F.; High, K.A. Factor IX Expression in Skeletal Muscle of a Severe Hemophilia B Patient 10 Years after AAV-Mediated Gene Transfer. Blood 2012, 119, 3038–3041. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Xu, Y.; Zhou, W.; Zhong, L.; Wen, Z.; Yu, H.; Chen, S.; Shen, J.; Chen, H.; She, Q.; et al. The Viral Oncoprotein HBx of Hepatitis B Virus Promotes the Growth of Hepatocellular Carcinoma through Cooperating with the Cellular Oncoprotein RMP. Int. J. Biol. Sci. 2014, 10, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- Szymczak, A.L.; Workman, C.J.; Wang, Y.; Vignali, K.M.; Dilioglou, S.; Vanin, E.F.; Vignali, D.A.A. Correction of Multi-Gene Deficiency in Vivo Using a Single “self-Cleaving” 2A Peptide-Based Retroviral Vector. Nat. Biotechnol. 2004, 22, 589–594. [Google Scholar] [CrossRef]
- Fang, J.; Qian, J.-J.; Yi, S.; Harding, T.C.; Tu, G.H.; VanRoey, M.; Jooss, K. Stable Antibody Expression at Therapeutic Levels Using the 2A Peptide. Nat. Biotechnol. 2005, 23, 584–590. [Google Scholar] [CrossRef]
- Fang, J.; Yi, S.; Simmons, A.; Tu, G.H.; Nguyen, M.; Harding, T.C.; VanRoey, M.; Jooss, K. An Antibody Delivery System for Regulated Expression of Therapeutic Levels of Monoclonal Antibodies in Vivo. Mol. Ther. 2007, 15, 1153–1159. [Google Scholar] [CrossRef]
- Balazs, A.B.; Chen, J.; Hong, C.M.; Rao, D.S.; Yang, L.; Baltimore, D. Antibody-Based Protection against HIV Infection by Vectored Immunoprophylaxis. Nature 2012, 481, 81–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chng, J.; Wang, T.; Nian, R.; Lau, A.; Hoi, K.M.; Ho, S.C.; Gagnon, P.; Bi, X.; Yang, Y. Cleavage Efficient 2A Peptides for High Level Monoclonal Antibody Expression in CHO Cells. mAbs 2015, 7, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Backes, I.M.; Byrd, B.K.; Patel, C.D.; Taylor, S.A.; Garland, C.R.; MacDonald, S.W.; Balazs, A.B.; Davis, S.C.; Ackerman, M.E.; Leib, D.A. Maternally Transferred Monoclonal Antibodies Protect Neonatal Mice from Herpes Simplex Virus-Induced Mortality and Morbidity. Immunology 2022. [Google Scholar] [CrossRef]
- Skaricic, D.; Traube, C.; De, B.; Joh, J.; Boyer, J.; Crystal, R.G.; Worgall, S. Genetic Delivery of an Anti-RSV Antibody to Protect against Pulmonary Infection with RSV. Virology 2008, 378, 79–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Lieshout, L.P.; Soule, G.; Sorensen, D.; Frost, K.L.; He, S.; Tierney, K.; Safronetz, D.; Booth, S.A.; Kobinger, G.P.; Qiu, X.; et al. Intramuscular Adeno-Associated Virus–Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice. J. Infect. Dis. 2018, 217, 916–925. [Google Scholar] [CrossRef]
- Kisalu, N.K.; Pereira, L.D.; Ernste, K.; Flores-Garcia, Y.; Idris, A.H.; Asokan, M.; Dillon, M.; MacDonald, S.; Shi, W.; Chen, X.; et al. Enhancing Durability of CIS43 Monoclonal Antibody by Fc Mutation or AAV Delivery for Malaria Prevention. J. Clin. Investig. 2021, 6, e143958. [Google Scholar] [CrossRef]
- Nieto, K.; Salvetti, A. AAV Vectors Vaccines Against Infectious Diseases. Front. Immunol. 2014, 5, 5. [Google Scholar] [CrossRef]
- Sanders, J.W.; Ponzio, T.A. Vectored Immunoprophylaxis: An Emerging Adjunct to Traditional Vaccination. Trop. Dis. Travel Med. Vaccines 2017, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Rghei, A.D.; van Lieshout, L.P.; Santry, L.A.; Guilleman, M.M.; Thomas, S.P.; Susta, L.; Karimi, K.; Bridle, B.W.; Wootton, S.K. AAV Vectored Immunoprophylaxis for Filovirus Infections. Trop. Med. 2020, 5, 169. [Google Scholar] [CrossRef]
- Balazs, A.B.; Bloom, J.D.; Hong, C.M.; Rao, D.S.; Baltimore, D. Broad Protection against Influenza Infection by Vectored Immunoprophylaxis in Mice. Nat. Biotechnol. 2013, 31, 647–652. [Google Scholar] [CrossRef]
- Balazs, A.B.; Ouyang, Y.; Hong, C.M.; Chen, J.; Nguyen, S.M.; Rao, D.S.; An, D.S.; Baltimore, D. Vectored Immunoprophylaxis Protects Humanized Mice from Mucosal HIV Transmission. Nat. Med. 2014, 20, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Guilleman, M.M.; Stevens, B.A.Y.; Van Lieshout, L.P.; Rghei, A.D.; Pei, Y.; Santry, L.A.; Thompson, B.; Wootton, S.K. AAV-Mediated Delivery of Actoxumab and Bezlotoxumab Results in Serum and Mucosal Antibody Concentrations That Provide Protection from C. Difficile Toxin Challenge. Gene Ther. 2021, 1–18. [Google Scholar] [CrossRef]
- van Lieshout, L.P.; Rghei, A.D.; Cao, W.; He, S.; Soule, G.; Zhu, W.; Thomas, S.P.; Sorensen, D.; Frost, K.; Tierney, K.; et al. AAV-Monoclonal Antibody Expression Protects Mice from Ebola Virus without Impeding the Endogenous Antibody Response to Heterologous Challenge. Mol. Ther. Methods Clin. Dev. 2022, 26, 505–518. [Google Scholar] [CrossRef]
- Priddy, F.H.; Lewis, D.J.M.; Gelderblom, H.C.; Hassanin, H.; Streatfield, C.; LaBranche, C.; Hare, J.; Cox, J.H.; Dally, L.; Bendel, D.; et al. Adeno-Associated Virus Vectored Immunoprophylaxis to Prevent HIV in Healthy Adults: A Phase 1 Randomised Controlled Trial. Lancet HIV 2019, 6, e230–e239. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.M.; Phogat, S.K.; Chan-Hui, P.-Y.; Wagner, D.; Phung, P.; Goss, J.L.; Wrin, T.; Simek, M.D.; Fling, S.; Mitcham, J.L.; et al. Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target. Science 2009, 326, 285–289. [Google Scholar] [CrossRef] [Green Version]
- Euler, Z.; Bunnik, E.M.; Burger, J.A.; Boeser-Nunnink, B.D.M.; Grijsen, M.L.; Prins, J.M.; Schuitemaker, H. Activity of Broadly Neutralizing Antibodies, Including PG9, PG16, and VRC01, against Recently Transmitted Subtype B HIV-1 Variants from Early and Late in the Epidemic. J. Virol. 2011, 85, 7236–7245. [Google Scholar] [CrossRef] [Green Version]
- Phelps, M.; Balazs, A.B. Contribution to HIV Prevention and Treatment by Antibody-Mediated Effector Function and Advances in Broadly Neutralizing Antibody Delivery by Vectored Immunoprophylaxis. Front. Immunol. 2021, 12, 734304. [Google Scholar] [CrossRef]
- Casazza, J.P.; Cale, E.M.; Narpala, S.; Yamshchikov, G.V.; Coates, E.E.; Hendel, C.S.; Novik, L.; Holman, L.A.; Widge, A.T.; Apte, P.; et al. Safety and Tolerability of AAV8 Delivery of a Broadly Neutralizing Antibody in Adults Living with HIV: A Phase 1, Dose-Escalation Trial. Nat. Med. 2022, 28, 1022–1030. [Google Scholar] [CrossRef]
- Distinctive Types of Postzygotic Single-Nucleotide Mosaicisms in Healthy Individuals Revealed by Genome-Wide Profiling of Multiple Organs. PLoS Genet. 2018, 14, e1007395. Available online: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007395 (accessed on 11 November 2022).
- Virologic Effects of Broadly Neutralizing Antibody VRC01 Administration during Chronic HIV-1 Infection. Sci. Transl. Med. 2015, 7, 319ra206. Available online: https://www.science.org/doi/10.1126/scitranslmed.aad5752?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 11 November 2022).
- Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape. Annu. Rev. Virol. 2017, 4, 511–534. Available online: https://www.annualreviews.org/doi/10.1146/annurev-virology-101416-041936 (accessed on 11 November 2022). [CrossRef] [PubMed]
- Gruntman, A.M.; Su, L.; Su, Q.; Gao, G.; Mueller, C.; Flotte, T.R. Stability and Compatibility of Recombinant Adeno-Associated Virus Under Conditions Commonly Encountered in Human Gene Therapy Trials. Hum. Gene Ther. Methods 2015, 26, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingozzi, F.; High, K.A. Immune Responses to AAV Vectors: Overcoming Barriers to Successful Gene Therapy. Blood 2013, 122, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Huang, X.; Yang, Y. The TLR9-MyD88 Pathway Is Critical for Adaptive Immune Responses to Adeno-Associated Virus Gene Therapy Vectors in Mice. J. Clin. Investig. 2009, 119, 2388–2398. [Google Scholar] [CrossRef] [PubMed]
- Hösel, M.; Broxtermann, M.; Janicki, H.; Esser, K.; Arzberger, S.; Hartmann, P.; Gillen, S.; Kleeff, J.; Stabenow, D.; Odenthal, M.; et al. Toll-like Receptor 2-Mediated Innate Immune Response in Human Nonparenchymal Liver Cells toward Adeno-Associated Viral Vectors. Hepatology 2012, 55, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Guilbaud, M.; Devaux, M.; Couzinié, C.; Le Duff, J.; Toromanoff, A.; Vandamme, C.; Jaulin, N.; Gernoux, G.; Larcher, T.; Moullier, P.; et al. Five Years of Successful Inducible Transgene Expression Following Locoregional Adeno-Associated Virus Delivery in Nonhuman Primates with No Detectable Immunity. Hum. Gene Ther. 2019, 30, 802–813. [Google Scholar] [CrossRef]
- Herzog, R.W.; Hagstrom, J.N.; Kung, S.-H.; Tai, S.J.; Wilson, J.M.; Fisher, K.J.; High, K.A. Stable Gene Transfer and Expression of Human Blood Coagulation Factor IX after Intramuscular Injection of Recombinant Adeno-Associated Virus. Proc. Natl. Acad. Sci. USA 1997, 94, 5804–5809. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, T.K. Development of ImmTOR Tolerogenic Nanoparticles for the Mitigation of Anti-Drug Antibodies. Front. Immunol. 2020, 11, 969. [Google Scholar] [CrossRef]
- Meliani, A.; Boisgerault, F.; Hardet, R.; Marmier, S.; Collaud, F.; Ronzitti, G.; Leborgne, C.; Costa Verdera, H.; Simon Sola, M.; Charles, S.; et al. Antigen-Selective Modulation of AAV Immunogenicity with Tolerogenic Rapamycin Nanoparticles Enables Successful Vector Re-Administration. Nat. Commun. 2018, 9, 4098. [Google Scholar] [CrossRef] [Green Version]
- Leborgne, C.; Barbon, E.; Alexander, J.M.; Hanby, H.; Delignat, S.; Cohen, D.M.; Collaud, F.; Muraleetharan, S.; Lupo, D.; Silverberg, J.; et al. IgG-Cleaving Endopeptidase Enables in Vivo Gene Therapy in the Presence of Anti-AAV Neutralizing Antibodies. Nat. Med. 2020, 26, 1096–1101. [Google Scholar] [CrossRef]
- Haynes, B.F.; Kelsoe, G.; Harrison, S.C.; Kepler, T.B. B-Cell-Lineage Immunogen Design in Vaccine Development with HIV-1 as a Case Study. Nat. Biotechnol. 2012, 30, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Scharf, L.; West, A.P.; Sievers, S.A.; Chen, C.; Jiang, S.; Gao, H.; Gray, M.D.; McGuire, A.T.; Scheid, J.F.; Nussenzweig, M.C.; et al. Structural Basis for Germline Antibody Recognition of HIV-1 Immunogens. eLife 2016, 5, e13783. [Google Scholar] [CrossRef]
- Zhong, G.; Wang, H.; He, W.; Li, Y.; Mou, H.; Tickner, Z.J.; Tran, M.H.; Ou, T.; Yin, Y.; Diao, H.; et al. A Reversible RNA On-Switch That Controls Gene Expression of AAV-Delivered Therapeutics in Vivo. Nat. Biotechnol. 2020, 38, 169–175. [Google Scholar] [CrossRef]
- Yen, L.; Svendsen, J.; Lee, J.-S.; Gray, J.T.; Magnier, M.; Baba, T.; D’Amato, R.J.; Mulligan, R.C. Exogenous Control of Mammalian Gene Expression through Modulation of RNA Self-Cleavage. Nature 2004, 431, 471–476. [Google Scholar] [CrossRef]
- Gardner, M.R. Promise and Progress of an HIV-1 Cure by Adeno-Associated Virus Vector Delivery of Anti-HIV-1 Biologics. Front. Cell. Infect. Microbiol. 2020, 10, 176. [Google Scholar] [CrossRef]
- Lewis, A.D.; Chen, R.; Montefiori, D.C.; Johnson, P.R.; Clark, K.R. Generation of Neutralizing Activity against Human Immunodeficiency Virus Type 1 in Serum by Antibody Gene Transfer. J. Virol. 2002, 76, 8769–8775. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.K.; Wang, S.K.; Chu, C.J.; Copland, D.A.; Letizia, A.J.; Verdera, H.C.; Chiang, J.J.; Sethi, M.; Wang, M.K.; Neidermyer, W.J.; et al. Engineering Adeno-Associated Viral Vectors to Evade Innate Immune and Inflammatory Responses. Sci. Transl. Med. 2021, 13, eabd3438. [Google Scholar] [CrossRef]
- Holliger, P.; Hudson, P.J. Engineered Antibody Fragments and the Rise of Single Domains. Nat. Biotechnol. 2005, 23, 1126–1136. [Google Scholar] [CrossRef]
Antibiotic Class | Antibiotic | Mechanism of Action | Reference |
---|---|---|---|
B-lactams | Penicillin Cephalosporins Carbapenems | Inhibit bacterial cell wall biosynthesis | [57] |
Aminoglycosides | Tobramycin Gentamycin Amikacin Plazomicin | Inhibit bacterial protein synthesis | [1] |
Quinolones | Ciproflaxin Levofloxacin Pefloxacin | Inhibit bacterial DNA replication | [55] |
Polymyxins | Polymyxin B Colistin | Destroy LPS and disrupt outer cell membrane | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, J.A.; Rghei, A.D.; Thompson, B.; Susta, L.; Khursigara, C.M.; Wootton, S.K. Overcoming Barriers to Preventing and Treating P. aeruginosa Infections Using AAV Vectored Immunoprophylaxis. Biomedicines 2022, 10, 3162. https://doi.org/10.3390/biomedicines10123162
Lopes JA, Rghei AD, Thompson B, Susta L, Khursigara CM, Wootton SK. Overcoming Barriers to Preventing and Treating P. aeruginosa Infections Using AAV Vectored Immunoprophylaxis. Biomedicines. 2022; 10(12):3162. https://doi.org/10.3390/biomedicines10123162
Chicago/Turabian StyleLopes, Jordyn A., Amira D. Rghei, Brad Thompson, Leonardo Susta, Cezar M. Khursigara, and Sarah K. Wootton. 2022. "Overcoming Barriers to Preventing and Treating P. aeruginosa Infections Using AAV Vectored Immunoprophylaxis" Biomedicines 10, no. 12: 3162. https://doi.org/10.3390/biomedicines10123162
APA StyleLopes, J. A., Rghei, A. D., Thompson, B., Susta, L., Khursigara, C. M., & Wootton, S. K. (2022). Overcoming Barriers to Preventing and Treating P. aeruginosa Infections Using AAV Vectored Immunoprophylaxis. Biomedicines, 10(12), 3162. https://doi.org/10.3390/biomedicines10123162