Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = varroosis control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2569 KiB  
Article
Phytochemical Composition and Pharmacological Efficacy Evaluation of Calamintha nepeta, Calamintha sylvatica, Lavandula austroapennina and Mentha piperita Essential Oils for the Control of Honeybee (Apis mellifera) Varroosis
by Roberto Bava, Fabio Castagna, Carmine Lupia, Stefano Ruga, Filomena Conforti, Mariangela Marrelli, Maria Pia Argentieri, Vincenzo Musella, Domenico Britti, Giancarlo Statti and Ernesto Palma
Animals 2024, 14(1), 69; https://doi.org/10.3390/ani14010069 - 24 Dec 2023
Cited by 5 | Viewed by 2121
Abstract
Varroa destructor is currently considered the parasite that causes the greatest damage and economic losses to honeybee farms. Its presence is often associated with that of viral and bacterial pathogens, which ultimately leads to colony collapse. Careful control of the parasitic load is [...] Read more.
Varroa destructor is currently considered the parasite that causes the greatest damage and economic losses to honeybee farms. Its presence is often associated with that of viral and bacterial pathogens, which ultimately leads to colony collapse. Careful control of the parasitic load is therefore necessary to avoid the onset of these events. Although chemical treatments are often in easily and quickly administered formulations, in recent years, there have been increasingly frequent reports of the onset of drug resistance phenomena, which must lead to reconsidering their use. Furthermore, chemical compounds can easily accumulate in the food matrices of the hive, with possible risks for the final consumer. In such a condition, it is imperative to find alternative treatment solutions. Essential oils (EOs) prove to be promising candidates due to their good efficacy and good environmental biodegradability. In this study, the acaricidal efficacy of the EOs of Calamintha sylvatica Bromf., Calamintha nepeta Savi, Lavandula austroapennina N.G. Passal. Tundis & Upson and Mentha piperita L., extracted from botanical species belonging to the Lamiaceae family, was evaluated. The test chosen for the evaluation was residual toxicity by contact. The examined EOs were diluted in Acetone to a concentration of 2, 1 and 0.5 mg/mL. At the highest concentration, the EOs demonstrated an acaricidal activity equal to 52% for C. nepeta, 60% for C. sylvatica, 80% for L. austroapennina and 68% for M. piperita. Of the EOs tested, therefore, Lavender proves to be a good candidate for subsequent evaluations in semi-field and field studies. Full article
(This article belongs to the Special Issue Apiculture and Challenges for Future—2nd Edition)
Show Figures

Figure 1

16 pages, 2435 KiB  
Article
Chemical Profile of Essential Oils of Selected Lamiaceae Plants and In Vitro Activity for Varroosis Control in Honeybees (Apis mellifera)
by Roberto Bava, Fabio Castagna, Carmine Lupia, Stefano Ruga, Vincenzo Musella, Filomena Conforti, Mariangela Marrelli, Maria Pia Argentieri, Domenico Britti, Giancarlo Statti and Ernesto Palma
Vet. Sci. 2023, 10(12), 701; https://doi.org/10.3390/vetsci10120701 - 13 Dec 2023
Cited by 4 | Viewed by 2548
Abstract
The most significant ectoparasitic mite of honeybees, Varroa destructor, has a detrimental effect on bee health and honey output. The principal strategy used by the control programs is the application of synthetic acaricides. All of this has resulted in drug resistance, which [...] Read more.
The most significant ectoparasitic mite of honeybees, Varroa destructor, has a detrimental effect on bee health and honey output. The principal strategy used by the control programs is the application of synthetic acaricides. All of this has resulted in drug resistance, which is now a major worry for beekeeping. As a result, research on alternate products and techniques for mite management is now required. The aim of this study was to determine whether essential oils (EOs) extracted from botanical species of Lamiacae, typical of the Calabria region of Southern Italy, could reduce the population of the mite V. destructor. Among the best-known genera of the Lamiaceae family are oregano, rosemary and thyme, whose EOs were employed in this study. By steam distillation, the EOs were extracted from Origanum vulgare subsp. viridulum (Martrin-Donos) Nyman, Thymus capitatus Hoffmanns. and Link, Thymus longicaulis C.Presl and Salvia rosmarinus Schleid. plant species harvested directly on the Calabrian territory in their balsamic time. Each EO went to the test in vitro (contact toxicity) against V. destructor. Fifty adult female mites, five for each EO and the positive and negative control, were used in each experimental replicate. The positive controls comprised five individuals treated to Amitraz dilute in acetone, and the negative controls included five individuals exposed to acetone alone. To create the working solution to be tested (50 μL/tube), the EOs were diluted (0.5 mg/mL, 1 mg/mL, 2 mg/mL and 4 mg/mL) in HPLC-grade acetone. After 1 h of exposure, mite mortality was manually assessed. Origanum vulgare subsp. viridulum, Thymus capitatus and Thymus longicaulis were the EOs with the highest levels of efficiency at 2 mg/mL, neutralizing (dead + inactivated), 94%, 92% and 94% of parasites, respectively. Salvia rosmarinus EO gave a lower efficacy, resulting in a percentage of 38%. Interestingly, no adverse effects were highlighted in toxicity tests on honeybees. These results show that these OEs of the Lamiaceae family have antiparasitic action on V. destructor. Therefore, they could be used, individually or combined, to exploit the synergistic effect for a more sustainable control of this parasite mite in honeybee farms. Full article
(This article belongs to the Special Issue Pharmacokinetics and Pharmacodynamics in Animal Clinical Treatment)
Show Figures

Figure 1

15 pages, 1678 KiB  
Article
Prevalence of Varroa destructor in Honeybee (Apis mellifera) Farms and Varroosis Control Practices in Southern Italy
by Roberto Bava, Fabio Castagna, Ernesto Palma, Carlotta Ceniti, Maurizio Millea, Carmine Lupia, Domenico Britti and Vincenzo Musella
Microorganisms 2023, 11(5), 1228; https://doi.org/10.3390/microorganisms11051228 - 6 May 2023
Cited by 9 | Viewed by 2669
Abstract
The majority of honeybee farms in industrialized countries currently base their Varroa destructor control programs on the use of acaricides in conjunction with other management practices. However, the outcomes of these practices are often misunderstood and have only been studied to a limited [...] Read more.
The majority of honeybee farms in industrialized countries currently base their Varroa destructor control programs on the use of acaricides in conjunction with other management practices. However, the outcomes of these practices are often misunderstood and have only been studied to a limited extent. Better yields are guaranteed by having hives with low infection levels in the spring. Therefore, it is crucial to understand which beekeeping practices can result in increased control effectiveness. This study aimed to analyze the potential effects of environmental factors and beekeeping practices on the dynamics of V. destructor population. Experimental evidence was obtained by interpolating percentage infestation data from diagnoses conducted on several apiaries in the Calabria region (Southern Italy) with data acquired from a questionnaire on pest control strategies. Data on climatic temperature during the different study periods were also taken into account. The study was conducted over two years and involved 84 Apis mellifera farms. For each apiary, the diagnosis of infestation was made on a minimum of 10 hives. In total, 840 samples of adult honeybees were analyzed in the field to determine the level of infestation. In 2020, 54.7% of the inspected apiaries tested positive for V. destructor, and in 2021, 50% tested positive, according to a study of the field test findings (taking into account a threshold of 3% in July). A significant effect of the number of treatments on parasite prevalence was found. The results showed a significant reduction in the infestation rate in apiaries that received more than two treatments each year. Furthermore, it was shown that management practices, such as drone brood removal and frequent queen replacement, have a statistically significant impact on the infestation rate. The analysis of the questionnaires revealed some critical issues. In particular, only 50% of the interviewed beekeepers diagnosed infestation on samples of adult bees, and only 69% practiced drug rotation. In conclusion, it is only possible to maintain the infestation rate at an acceptable threshold by implementing integrated pest management (IPM) programs and using good beekeeping practices (GBPs). Full article
(This article belongs to the Section Parasitology)
Show Figures

Figure 1

28 pages, 464 KiB  
Review
Essential Oils for a Sustainable Control of Honeybee Varroosis
by Roberto Bava, Fabio Castagna, Ernesto Palma, Mariangela Marrelli, Filomena Conforti, Vincenzo Musolino, Cristina Carresi, Carmine Lupia, Carlotta Ceniti, Bruno Tilocca, Paola Roncada, Domenico Britti and Vincenzo Musella
Vet. Sci. 2023, 10(5), 308; https://doi.org/10.3390/vetsci10050308 - 23 Apr 2023
Cited by 23 | Viewed by 5740
Abstract
The Varroa destructor parasite is the main obstacle to the survival of honey bee colonies. Pest control mainly involves the use of synthetic drugs which, used with the right criteria and in rotation, are able to ensure that infestation levels are kept below [...] Read more.
The Varroa destructor parasite is the main obstacle to the survival of honey bee colonies. Pest control mainly involves the use of synthetic drugs which, used with the right criteria and in rotation, are able to ensure that infestation levels are kept below the damage threshold. Although these drugs are easy to use and quick to apply, they have numerous disadvantages. Their prolonged use has led to the emergence of pharmacological resistance in treated parasite populations; furthermore, the active ingredients and/or their metabolites accumulate in the beehive products with the possibility of risk for the end consumer. Moreover, the possibility of subacute and chronic toxicity phenomena for adult honeybees and their larval forms must be considered. In this scenario, eco-friendly products derived from plant species have aroused great interest over the years. In recent decades, several studies have been carried out on the acaricidal efficacy of plant essential oils (EOs). Despite the swarming of laboratory and field studies, however, few EO products have come onto the market. Laboratory studies have often yielded different results even for the same plant species. The reason for this discrepancy lies in the various study techniques employed as well as in the variability of the chemical compositions of plants. The purpose of this review is to take stock of the research on the use of EOs to control the V. destructor parasite. It begins with an extensive discussion of the characteristics, properties, and mechanisms of action of EOs, and then examines the laboratory and field tests carried out. Finally, an attempt is made to standardize the results and open up new lines of study in future. Full article
(This article belongs to the Special Issue Pharmacokinetics and Pharmacodynamics in Animal Clinical Treatment)
14 pages, 2326 KiB  
Article
Results of an International Survey for Risk Assessment of Honey Bee Health Concerning Varroa Management
by Alessandra De Carolis, Adam J. Newmark, Jieun Kim, Joseph Cazier, Ed Hassler, Marco Pietropaoli, Chris Robinette, Giovanni Formato and Junxia Song
Appl. Sci. 2023, 13(1), 62; https://doi.org/10.3390/app13010062 - 21 Dec 2022
Cited by 7 | Viewed by 3074
Abstract
Here, we present the results of an online international survey concerning the adoption of good beekeeping practices and proper biosecurity measures for the management of varroosis in Apis mellifera. The survey was designed as a risk assessment tool by the Food and [...] Read more.
Here, we present the results of an online international survey concerning the adoption of good beekeeping practices and proper biosecurity measures for the management of varroosis in Apis mellifera. The survey was designed as a risk assessment tool by the Food and Agriculture Organization of the United Nations (FAO), the International Federation of Beekeepers’ Association (Apimondia), the Center for Analytics Research & Education (CARE) at Appalachian State University, and Istituto Zooprofilattico Sperimentale Lazio e Toscana (IZSLT). The data collected investigated the beekeeping techniques, treatments, and training beekeepers adopt concerning the varroa mite. The idea was to validate a tool able to collect and compare, in the different areas of the world, the management measures adopted by beekeepers to face this major parasitic disease of honey bees. The survey was disseminated online for a period of 14 months (January 2019–March 2020) through the FAO website. A total of 861 responses were received, most of them from the Americas (20.9%) and Europe (74.7%). Concerning the control measures useful in combating varroa, the results showed an overall awareness of the usefulness of biosecurity measures in beekeeping (BMBs), which we compare across regions. The majority of the beekeepers (89.9% in the Americas and 82.8% in Europe) were interested in additional bee health training and, at the same time, were willing to connect themselves with veterinary experts specialized in bees. This is an indication that beekeepers recognize the importance of training and experts’ advice. This study revealed the efficacy of the survey adopted as a useful assessment tool that will be further disseminated, even in geographic regions heretofore not investigated, to provide useful information on the status of the beekeeping sector. Full article
Show Figures

Figure 1

10 pages, 997 KiB  
Article
Two Faces of the Screened Bottom Boards—An Ambiguous Influence on the Honey Bee Winter Colony Loss Rate
by Ewa Danuta Mazur, Michał Czopowicz and Anna Maria Gajda
Insects 2022, 13(12), 1128; https://doi.org/10.3390/insects13121128 - 7 Dec 2022
Cited by 3 | Viewed by 2451
Abstract
We conducted a citizen science survey on the winter honey bee colony losses in Poland from 2017/18 to 2019/20 to determine the influence of the use of screened bottom boards on the winter colony losses due to various causes. A total of 1035 [...] Read more.
We conducted a citizen science survey on the winter honey bee colony losses in Poland from 2017/18 to 2019/20 to determine the influence of the use of screened bottom boards on the winter colony losses due to various causes. A total of 1035 beekeepers with 40,003 colonies reported valid data. The overall winter colony loss rate ranged from 10.7% to 13.9%, and in every year, the overall winter colony loss rate was higher than 10% (which is considered as acceptable in Poland). The study reveals that the use of screened bottom boards was associated with reduced overall loss rate. However, the nature of this relationship was not the same in terms of all types of colony losses: while the use of screened bottom boards was associated with a reduced mortality rate (management-related colony loss rate due to dead colonies) in which the empty hives were observed (colony depopulation syndrome, CDS), it was associated with an increased mortality rate in which the lack of food was observed (starvation). Given that in our study the role of CDS in the overall colony loss rate was 2.5-fold higher than the role of starvation, the final influence of the use of screened bottom boards on the overall colony loss rate turned out to be beneficial. Given the well-known beneficial role of screened bottom boards in varroosis control, they are highly recommended in beekeeping practices in Poland. Full article
(This article belongs to the Special Issue Losses of Honey Bee Colonies across the World)
Show Figures

Figure 1

28 pages, 529 KiB  
Review
Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees
by Massimo Iorizzo, Francesco Letizia, Sonia Ganassi, Bruno Testa, Sonia Petrarca, Gianluca Albanese, Dalila Di Criscio and Antonio De Cristofaro
Insects 2022, 13(3), 308; https://doi.org/10.3390/insects13030308 - 21 Mar 2022
Cited by 37 | Viewed by 7851
Abstract
Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, [...] Read more.
Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper’s management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee’s well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee’s intestinal bacterial community can become an indicator of the honey bee’s health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control. Full article
(This article belongs to the Special Issue Gut Microbiota in Social Insects)
11 pages, 603 KiB  
Article
Improving the Varroa (Varroa destructor) Control Strategy by Brood Treatment with Formic Acid—A Pilot Study on Spring Applications
by Eliza Căuia and Dumitru Căuia
Insects 2022, 13(2), 149; https://doi.org/10.3390/insects13020149 - 30 Jan 2022
Cited by 8 | Viewed by 5592
Abstract
The importance of varroosis control in a natural and sustainable way is crucial for beekeeping, having in view the varroa mite impact on honey bee health. In the last years, we developed a highly effective procedure for treating varroa in capped brood using [...] Read more.
The importance of varroosis control in a natural and sustainable way is crucial for beekeeping, having in view the varroa mite impact on honey bee health. In the last years, we developed a highly effective procedure for treating varroa in capped brood using volatile organic acids. This procedure can be applied at any moment of the active season as it uses organic substances. Taking into account the necessity to drastically reduce the level of varroa infestation in colonies before winter bee rearing, we developed a relatively simple pilot study to preliminarily test the impact of spring treatments on varroa infestation level in brood, to be evaluated in summer when, naturally, the population of mites increases. To test the hypothesis, two experimentally treated groups and a control group were used. The treatment consisted of brushing all capped brood with formic acid of 65% concentration in one and two applications. The obtained results show very significant differences between the treated and control groups in terms of infested cell percentages evaluated in the July–August period. Consequently, the spring treatments could be an important tool in limiting the varroa mite multiplication, but further experiments are necessary to test and adapt them to different local conditions. Full article
(This article belongs to the Special Issue Insects Ecology and Biocontrol Applications)
Show Figures

Figure 1

10 pages, 861 KiB  
Communication
Changes in Lithium Levels in Bees and Their Products Following Anti-Varroa Treatment
by Éva Kolics, Zsófi Sajtos, Kinga Mátyás, Kinga Szepesi, Izabella Solti, Gyöngyi Németh, János Taller, Edina Baranyai, András Specziár and Balázs Kolics
Insects 2021, 12(7), 579; https://doi.org/10.3390/insects12070579 - 25 Jun 2021
Cited by 16 | Viewed by 4526
Abstract
The biggest threat to beekeeping is varroosis caused by the mite Varroa destructor. Chemicals available to treat this fatal disease may present problems of resistance or inconsistent efficacy. Recently, lithium chloride has appeared as a potential alternative. To date, the amount of [...] Read more.
The biggest threat to beekeeping is varroosis caused by the mite Varroa destructor. Chemicals available to treat this fatal disease may present problems of resistance or inconsistent efficacy. Recently, lithium chloride has appeared as a potential alternative. To date, the amount of residue lithium treatments may leave in honeybee products is poorly understood. Honeybees were fed with 25 mM lithiated sugar syrup, which was used in earlier studies. The accumulation and elimination of the lithium were monitored in bees and their products for 22 days. Lithium concentration increased in the entire body of the bees to day 4 post-treatment and then recovered rapidly to the control level. Lithium exposure was found to affect uncapped honey in the short term (<16 days), but ripe (capped) honey measured at the end of the trial remained affected. On the other hand, lithium treatment left beeswax lithium-free. Based on these data, we propose that comprehensive research on harvested honey is needed to decide on the veterinary use of lithium. Full article
Show Figures

Figure 1

17 pages, 1753 KiB  
Article
Gas Sensor Array and Classifiers as a Means of Varroosis Detection
by Andrzej Szczurek, Monika Maciejewska, Beata Bąk, Jakub Wilk, Jerzy Wilde and Maciej Siuda
Sensors 2020, 20(1), 117; https://doi.org/10.3390/s20010117 - 23 Dec 2019
Cited by 23 | Viewed by 4224
Abstract
The study focused on a method of detection for bee colony infestation with the Varroa destructor mite, based on the measurements of the chemical properties of beehive air. The efficient detection of varroosis was demonstrated. This method of detection is based on a [...] Read more.
The study focused on a method of detection for bee colony infestation with the Varroa destructor mite, based on the measurements of the chemical properties of beehive air. The efficient detection of varroosis was demonstrated. This method of detection is based on a semiconductor gas sensor array and classification module. The efficiency of detection was characterized by the true positive rate (TPR) and true negative rate (TNR). Several factors influencing the performance of the method were determined. They were: (1) the number and kind of sensors, (2) the classifier, (3) the group of bee colonies, and (4) the balance of the classification data set. Gas sensor array outperformed single sensors. It should include at least four sensors. Better results of detection were attained with a support vector machine (SVM) as compared with the k-nearest neighbors (k-NN) algorithm. The selection of bee colonies was important. TPR and TNR differed by several percent for the two examined groups of colonies. The balance of the classification data was crucial. The average classification results were, for the balanced data set: TPR = 0.93 and TNR = 0.95, and for the imbalanced data set: TP = 0.95 and FP = 0.53. The selection of bee colonies and the balance of classification data set have to be controlled in order to attain high performance of the proposed detection method. Full article
(This article belongs to the Collection Sensors in Agriculture and Forestry)
Show Figures

Figure 1

Back to TopTop