Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = variational quantum circuit (VQC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2622 KiB  
Article
Emulation of Variational Quantum Circuits on Embedded Systems for Real-Time Quantum Machine Learning Applications
by Ali Masoudian, Uffe Jakobsen and Mohammad Hassan Khooban
Designs 2025, 9(4), 87; https://doi.org/10.3390/designs9040087 - 11 Jul 2025
Viewed by 433
Abstract
This paper presents an engineering design framework for integrating Variational Quantum Circuits (VQCs) into industrial control systems via real-time quantum emulation on embedded hardware. In this work, we present a novel framework for fully embedded real-time quantum machine learning (QML), in which a [...] Read more.
This paper presents an engineering design framework for integrating Variational Quantum Circuits (VQCs) into industrial control systems via real-time quantum emulation on embedded hardware. In this work, we present a novel framework for fully embedded real-time quantum machine learning (QML), in which a four-qubit, four-layer VQC is both emulated and trained in situ on an FPGA-based embedded platform (dSPACE MicroLabBox 1202). The system achieves deterministic microsecond-scale response at a closed-loop frequency of 100 kHz, enabling its application in latency-critical control tasks. We demonstrate the feasibility of online VQC training within this architecture by approximating nonlinear functions in real time, thereby validating the potential of embedded QML for advanced signal processing and control applications. This approach provides a scalable and practical path toward real-time Quantum Reinforcement Learning (QRL) and other quantum-enhanced embedded controllers. The results validate the feasibility of real-time quantum emulation and establish a structured engineering design methodology for implementing trainable quantum machine learning (QML) models on embedded platforms, thereby enabling the development of deployable quantum-enhanced controllers. Full article
Show Figures

Figure 1

37 pages, 33539 KiB  
Article
Domain-Separated Quantum Neural Network for Truss Structural Analysis with Mechanics-Informed Constraints
by Hyeonju Ha, Sudeok Shon and Seungjae Lee
Biomimetics 2025, 10(6), 407; https://doi.org/10.3390/biomimetics10060407 - 16 Jun 2025
Viewed by 650
Abstract
This study proposes an index-based quantum neural network (QNN) model, built upon a variational quantum circuit (VQC), as a surrogate framework for the static analysis of truss structures. Unlike coordinate-based models, the proposed QNN uses discrete member and node indices as inputs, and [...] Read more.
This study proposes an index-based quantum neural network (QNN) model, built upon a variational quantum circuit (VQC), as a surrogate framework for the static analysis of truss structures. Unlike coordinate-based models, the proposed QNN uses discrete member and node indices as inputs, and it adopts a separate-domain strategy that partitions the structure for parallel training. This architecture reflects the way nature organizes and optimizes complex systems, thereby enhancing both flexibility and scalability. Independent quantum circuits are assigned to each separate domain, and a mechanics-informed loss function based on the force method is formulated within a Lagrangian dual framework to embed physical constraints directly into the training process. As a result, the model achieves high prediction accuracy and fast convergence, even under complex structural conditions with relatively few parameters. Numerical experiments on 2D and 3D truss structures show that the QNN reduces the number of parameters by up to 64% compared to conventional neural networks, while achieving higher accuracy. Even within the same QNN architecture, the separate-domain approach outperforms the single-domain model with a 6.25% reduction in parameters. The proposed index-based QNN model has demonstrated practical applicability for structural analysis and shows strong potential as a quantum-based numerical analysis tool for future applications in building structure optimization and broader engineering domains. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

21 pages, 5110 KiB  
Article
Leveraging Quantum Machine Learning to Address Class Imbalance: A Novel Approach for Enhanced Predictive Accuracy
by Seongjun Kwon, Jihye Huh, Sang Ji Kwon, Sang-ho Choi and Ohbyung Kwon
Symmetry 2025, 17(2), 186; https://doi.org/10.3390/sym17020186 - 25 Jan 2025
Cited by 1 | Viewed by 1803
Abstract
The class imbalance problem presents a critical challenge in real-world applications, particularly in high-stakes domains such as healthcare, finance, disaster management, and fault diagnosis, where accurate anomaly detection is paramount. Class imbalance often disrupts the inherent symmetry of data distributions, resulting in suboptimal [...] Read more.
The class imbalance problem presents a critical challenge in real-world applications, particularly in high-stakes domains such as healthcare, finance, disaster management, and fault diagnosis, where accurate anomaly detection is paramount. Class imbalance often disrupts the inherent symmetry of data distributions, resulting in suboptimal performance of traditional machine learning models. Conventional approaches such as undersampling and oversampling are commonly employed to address this issue; however, these methods can introduce additional asymmetries, including information loss and overfitting, which ultimately compromise model efficacy. This study introduces an innovative approach leveraging quantum machine learning (QML), specifically the Variational Quantum Classifier (VQC), to restore and capitalize on the symmetrical properties of data distributions without relying on resampling techniques. By employing quantum circuits optimized to mitigate the asymmetries inherent in imbalanced datasets, the proposed method demonstrates consistently superior performance across diverse datasets, with notable improvements in Recall for minority classes. These findings underscore the potential of quantum machine learning as a robust alternative to classical methods, offering a symmetry-aware solution to class imbalance and advancing QML-driven technologies in fields where equitable representation and symmetry are of critical importance. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

32 pages, 1786 KiB  
Article
On the Applicability of Quantum Machine Learning
by Sebastian Raubitzek and Kevin Mallinger
Entropy 2023, 25(7), 992; https://doi.org/10.3390/e25070992 - 28 Jun 2023
Cited by 6 | Viewed by 4616
Abstract
In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these [...] Read more.
In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these classifiers when using a hyperparameter search on six widely known and publicly available benchmark datasets and analyze how their performance varies with the number of samples on two artificially generated test classification datasets. As quantum machine learning is based on unitary transformations, this paper explores data structures and application fields that could be particularly suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made publicly available and contributes a novel contribution to the empirical evaluation of quantum supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do not match the accuracy and runtime performance of sophisticated modern boosting classifiers such as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning algorithms have the potential to surpass classical machine learning methods in the future, especially when physical quantum infrastructure becomes widely available, they currently lag behind classical approaches. Our investigations also show that classical machine learning approaches have superior performance classifying datasets based on group structures, compared to quantum approaches that particularly use unitary processes. Furthermore, our findings highlight the significant impact of different quantum simulators, feature maps, and quantum circuits on the performance of the employed quantum estimators. This observation emphasizes the need for researchers to provide detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as this aspect is currently overlooked in many studies within the field. To facilitate further research in this area and ensure the transparency of our study, we have made the complete code available in a linked GitHub repository. Full article
(This article belongs to the Special Issue Advances in Quantum Computing)
Show Figures

Figure 1

41 pages, 1277 KiB  
Review
Quantum Machine Learning: A Review and Case Studies
by Amine Zeguendry, Zahi Jarir and Mohamed Quafafou
Entropy 2023, 25(2), 287; https://doi.org/10.3390/e25020287 - 3 Feb 2023
Cited by 104 | Viewed by 29672
Abstract
Despite its undeniable success, classical machine learning remains a resource-intensive process. Practical computational efforts for training state-of-the-art models can now only be handled by high speed computer hardware. As this trend is expected to continue, it should come as no surprise that an [...] Read more.
Despite its undeniable success, classical machine learning remains a resource-intensive process. Practical computational efforts for training state-of-the-art models can now only be handled by high speed computer hardware. As this trend is expected to continue, it should come as no surprise that an increasing number of machine learning researchers are investigating the possible advantages of quantum computing. The scientific literature on Quantum Machine Learning is now enormous, and a review of its current state that can be comprehended without a physics background is necessary. The objective of this study is to present a review of Quantum Machine Learning from the perspective of conventional techniques. Departing from giving a research path from fundamental quantum theory through Quantum Machine Learning algorithms from a computer scientist’s perspective, we discuss a set of basic algorithms for Quantum Machine Learning, which are the fundamental components for Quantum Machine Learning algorithms. We implement the Quanvolutional Neural Networks (QNNs) on a quantum computer to recognize handwritten digits, and compare its performance to that of its classical counterpart, the Convolutional Neural Networks (CNNs). Additionally, we implement the QSVM on the breast cancer dataset and compare it to the classical SVM. Finally, we implement the Variational Quantum Classifier (VQC) and many classical classifiers on the Iris dataset to compare their accuracies. Full article
(This article belongs to the Special Issue Quantum Machine Learning 2022)
Show Figures

Figure 1

Back to TopTop