Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = understory AGB estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4918 KiB  
Article
Mapping Individual Tree- and Plot-Level Biomass Using Handheld Mobile Laser Scanning in Complex Subtropical Secondary and Old-Growth Forests
by Nelson Pak Lun Mak, Tin Yan Siu, Ying Ki Law, He Zhang, Shaoti Sui, Fung Ting Yip, Ying Sim Ng, Yuhao Ye, Tsz Chun Cheung, Ka Cheong Wa, Lap Hang Chan, Kwok Yin So, Billy Chi Hang Hau, Calvin Ka Fai Lee and Jin Wu
Remote Sens. 2025, 17(8), 1354; https://doi.org/10.3390/rs17081354 - 10 Apr 2025
Viewed by 1937
Abstract
Forests are invaluable natural resources that provide essential ecosystem services, and their carbon storage capacity is critical for climate mitigation efforts. Quantifying this capacity would require accurate estimation of forest structural attributes for deriving their aboveground biomass (AGB). Traditional field measurements, while precise, [...] Read more.
Forests are invaluable natural resources that provide essential ecosystem services, and their carbon storage capacity is critical for climate mitigation efforts. Quantifying this capacity would require accurate estimation of forest structural attributes for deriving their aboveground biomass (AGB). Traditional field measurements, while precise, are labor-intensive and often spatially limited. Handheld Mobile Laser Scanning (HMLS) offers a rapid alternative for building forest inventories; however, its effectiveness and accuracy in diverse subtropical forests with complex canopy structure remain under-investigated. In this study, we employed both HMLS and traditional surveys within structurally complex subtropical forest plots, including old-growth forests (Fung Shui Woods) and secondary forests. These forests are characterized by dense understories with abundant shrubs and lianas, as well as high stem density, which pose challenges in Light Detection and Ranging (LiDAR) point cloud data processing. We assessed tree detection rates and extracted tree attributes, including diameter at breast height (DBH) and canopy height. Additionally, we compared tree-level and plot-level AGB estimates using allometric equations. Our findings indicate that HMLS successfully detected over 90% of trees in both forest types and precisely measured DBH (R2 > 0.96), although tree height detection exhibited relatively higher uncertainty (R2 > 0.35). The AGB estimates derived from HMLS were comparable to those obtained from traditional field measurements. By producing highly accurate estimates of tree attributes, HMLS demonstrates its potential as an effective and non-destructive method for rapid forest inventory and AGB estimation in subtropical forests, making it a competitive option for aiding carbon storage estimations in complex forest environments. Full article
(This article belongs to the Special Issue Forest Biomass/Carbon Monitoring towards Carbon Neutrality)
Show Figures

Figure 1

20 pages, 6387 KiB  
Article
Comparison of Three Approaches for Estimating Understory Biomass in Yanshan Mountains
by Yuanqi Li, Ronghai Hu, Yuzhen Xing, Zhe Pang, Zhi Chen and Haishan Niu
Remote Sens. 2024, 16(6), 1060; https://doi.org/10.3390/rs16061060 - 16 Mar 2024
Cited by 2 | Viewed by 2155
Abstract
Aboveground biomass (AGB) of shrubs and low-statured trees constitutes a substantial portion of the total carbon pool in temperate forest ecosystems, contributing much to local biodiversity, altering tree-regeneration growth rates, and determining above- and belowground food webs. Accurate quantification of AGB at the [...] Read more.
Aboveground biomass (AGB) of shrubs and low-statured trees constitutes a substantial portion of the total carbon pool in temperate forest ecosystems, contributing much to local biodiversity, altering tree-regeneration growth rates, and determining above- and belowground food webs. Accurate quantification of AGB at the shrub layer is crucial for ecological modeling and still remains a challenge. Several methods for estimating understory biomass, including inventory and remote sensing-based methods, need to be evaluated against measured datasets. In this study, we acquired 158 individual terrestrial laser scans (TLS) across 45 sites in the Yanshan Mountains and generated metrics including leaf area and stem volume from TLS data using voxel- and non-voxel-based approaches in both leaf-on and leaf-off scenarios. Allometric equations were applied using field-measured parameters as an inventory approach. The results indicated that allometric equations using crown area and height yielded results with higher accuracy than other inventory approach parameters (R2 and RMSE ranging from 0.47 to 0.91 and 12.38 to 38.11 g, respectively). The voxel-based approach using TLS data provided results with R2 and RMSE ranging from 0.86 to 0.96 and 6.43 to 21.03 g. Additionally, the non-voxel-based approach provided similar or slightly better results compared to the voxel-based approach (R2 and RMSE ranging from 0.93 to 0.96 and 4.23 to 11.27 g, respectively) while avoiding the complexity of selecting the optimal voxel size that arises during voxelization. Full article
Show Figures

Graphical abstract

20 pages, 4379 KiB  
Article
A Conceptual Model for Detecting Small-Scale Forest Disturbances Based on Ecosystem Morphological Traits
by Jaz Stoddart, Danilo Roberti Alves de Almeida, Carlos Alberto Silva, Eric Bastos Görgens, Michael Keller and Ruben Valbuena
Remote Sens. 2022, 14(4), 933; https://doi.org/10.3390/rs14040933 - 15 Feb 2022
Cited by 7 | Viewed by 2793
Abstract
Current LiDAR-based methods for detecting forest change use a host of statistically selected variables which typically lack a biological link with the characteristics of the ecosystem. Consensus of the literature indicates that many authors use LiDAR to derive ecosystem morphological traits (EMTs)—namely, vegetation [...] Read more.
Current LiDAR-based methods for detecting forest change use a host of statistically selected variables which typically lack a biological link with the characteristics of the ecosystem. Consensus of the literature indicates that many authors use LiDAR to derive ecosystem morphological traits (EMTs)—namely, vegetation height, vegetation cover, and vertical structural complexity—to identify small-scale changes in forest ecosystems. Here, we provide a conceptual, biological model for predicting forest aboveground biomass (AGB) change based on EMTs. We show that through use of a multitemporal dataset it is possible to not only identify losses caused by logging in the period between data collection but also identify regions of regrowth from prior logging using EMTs. This sensitivity to the change in forest dynamics was the criterion by which LiDAR metrics were selected as proxies for each EMT. For vegetation height, results showed that the top-of-canopy height derived from a canopy height model was more sensitive to logging than the average or high percentile of raw LiDAR height distributions. For vegetation cover metrics, lower height thresholds for fractional cover calculations were more sensitive to selective logging and the regeneration of understory. For describing the structural complexity in the vertical profile, the Gini coefficient was found to be superior to foliage height diversity for detecting the dynamics occurring over the years after logging. The subsequent conceptual model for AGB estimation obtained a level of accuracy which was comparable to a model that was statistically optimised for that same area. We argue that a widespread adoption of an EMT-based conceptual approach would improve the transferability and comparability of LiDAR models for AGB worldwide. Full article
Show Figures

Figure 1

17 pages, 2166 KiB  
Article
Species Diversity, Growing Stock Variables and Carbon Mitigation Potential in the Phytocoenosis of Monotheca buxifolia Forests along Altitudinal Gradient across Pakistan
by Fayaz Ali, Nasrullah Khan, Elsayed Fathi Abd_Allah and Adnan Ahmad
Appl. Sci. 2022, 12(3), 1292; https://doi.org/10.3390/app12031292 - 26 Jan 2022
Cited by 17 | Viewed by 2918
Abstract
The sub-tropical broadleaved forests in Pakistan are the main constituents of the ecosystem services playing a vital role in the global carbon cycle. Monotheca buxifolia (Falc.) A. DC. is an important constituent of these forests, encompassing a variety of ecological and commercial uses. [...] Read more.
The sub-tropical broadleaved forests in Pakistan are the main constituents of the ecosystem services playing a vital role in the global carbon cycle. Monotheca buxifolia (Falc.) A. DC. is an important constituent of these forests, encompassing a variety of ecological and commercial uses. To our best knowledge, no quantitative studies have been conducted in these forests across the landscape to establish a baseline for future monitoring. We investigated the forest structural attributes, growing stock characteristics and total biomass carbon stock and established relationships among them in the phytocoenosis of Monotheca forests along an altitudinal gradient in Pakistan to expand an eco-systemic model for assessment of the originally-implemented conservation strategies. A floristic survey recorded 4986 individuals of 27 species in overstory and 59 species in the understory stratum. Species richness (ANOVA; F = 3.239; p = 0.045) and Simpson’s diversity (ANOVA; F = 2.802; p = 0.043) differed significantly in three altitudinal zones, with a maximum value for lower elevations, followed by middle and higher elevations. Based on the importance values, Acacia modesta and Olea ferruginea are strong companions of M. buxifolia at lower and higher altitudes, whereas forests at mid elevation represent pure crop of M. buxifolia (IVI = ≥85.85%). A similar pattern in stem density, volume and Basal area were also recorded. The carbon stock in trees stratum (51.81 T ha−1) and understory vegetation (0.148 T ha−1) contributes high values in the lower elevation forests. In contrast, soil carbon had maximum values at higher elevation (36.21 T ha−1) and minimum at lower elevation (16.69 T ha−1) zones. Aboveground biomass carbon stock (AGB BMC) of woody trees, understory vegetation and soil organic carbon (SOC) were estimated higher (77.72 T ha−1) at higher and lower (68.65 T ha−1) elevations. Likewise, the AGB BMC exhibited a significant (p < 0.05) negative correlation with elevation and positive correlation with soil carbon. We concluded that lower elevation forests are more diverse and floristically rich in comparison to higher altitudinal forests. Similarly, the biomass carbon of Monotheca forests were recorded maximum at low altitudes followed by high and middle ranges, respectively. Full article
(This article belongs to the Special Issue Plant Biodiversity Patterns and Their Driving Forces)
Show Figures

Figure 1

21 pages, 6916 KiB  
Article
Carbon Stock Estimations in a Mediterranean Riparian Forest: A Case Study Combining Field Data and UAV Imagery
by Maria Rosário Fernandes, Francisca C. Aguiar, Maria João Martins, Nuno Rico, Maria Teresa Ferreira and Alexandra C. Correia
Forests 2020, 11(4), 376; https://doi.org/10.3390/f11040376 - 27 Mar 2020
Cited by 34 | Viewed by 7577
Abstract
This study aims to estimate the total biomass aboveground and soil carbon stocks in a Mediterranean riparian forest and identify the contribution of the different species and ecosystem compartments to the overall riparian carbon reservoir. We used a combined field and object-based image [...] Read more.
This study aims to estimate the total biomass aboveground and soil carbon stocks in a Mediterranean riparian forest and identify the contribution of the different species and ecosystem compartments to the overall riparian carbon reservoir. We used a combined field and object-based image analysis (OBIA) approach, based on unmanned aerial vehicle (UAV) multispectral imagery, to assess C stock of three dominant riparian species. A linear discriminator was designed, based on a set of spectral variables previously selected in an optimal way, permitting the classification of the species corresponding to every object in the study area. This made it possible to estimate the area occupied by each species and its contribution to the tree aboveground biomass (AGB). Three uncertainty levels were considered, related to the trade-off between the number of unclassified and misclassified objects, leading to an error control associated with the estimated tree AGB. We found that riparian woodlands dominated by Acacia dealbata Link showed the highest average carbon stock per unit area (251 ± 90 tC ha−1) followed by Alnus glutinosa (L.) Gaertner (162 ± 12 tC ha−1) and by Salix salviifolia Brot. (73 ± 17 tC ha−1), which are mainly related to the stem density, vegetation development and successional stage of the different stands. The woody tree compartment showed the highest inputs (79%), followed by the understory vegetation (12%) and lastly by the soil mineral layer (9%). Spectral vegetation indices developed to suppress saturation effects were consistently selected as important variables for species classification. The total tree AGB in the study area varies from 734 to 1053 tC according to the distinct levels of uncertainty. This study provided the foundations for the assessment of the riparian carbon sequestration and the economic value of the carbon stocks provided by similar Mediterranean riparian forests, a highly relevant ecosystem service for the regulation of climate change effects. Full article
Show Figures

Graphical abstract

27 pages, 2422 KiB  
Article
Exploring the Inclusion of Small Regenerating Trees to Improve Above-Ground Forest Biomass Estimation Using Geospatial Data
by Anh V. Le, David J. Paull and Amy L. Griffin
Remote Sens. 2018, 10(9), 1446; https://doi.org/10.3390/rs10091446 - 10 Sep 2018
Cited by 8 | Viewed by 4809
Abstract
Research on the contribution of understory components to the total above ground biomass (AGB) has to date received very little attention because most prior biomass estimation studies have ignored small regenerating trees beneath the main canopy with the assumption that their contribution to [...] Read more.
Research on the contribution of understory components to the total above ground biomass (AGB) has to date received very little attention because most prior biomass estimation studies have ignored small regenerating trees beneath the main canopy with the assumption that their contribution to biomass is generally negligible. Only a few biomass studies have emphasized a considerable contribution to biomass of understory components in forest ecosystems. However, this study of native, tropical, deciduous forest biomass in the Central Highlands of Vietnam was able to explore the contribution of small regenerating trees to total biomass by exploiting a large field inventory of hundreds to thousands of individually-counted small regenerating trees per hectare. Thus, this study investigated the influence of small regenerating tree biomass on models of the relationship between total AGB and remote sensing data. These analyses were trained with and without topographic variables derived from ASTER-GDEM. Our results demonstrate that the inclusion of small regenerating understory trees (R2 = 0.42, NRMSE or %RMSE = 30.5%) provides a quantifiable improvement in total estimated AGB compared to using only large woody canopy trees (R2 = 0.21, NRMSE or %RMSE = 36.6%) when correlating field-based biomass measurements with optical image-derived variables. All analyses show that the inclusion of terrain factors made an important contribution to biomass modeling. This study suggests that for young, open forests where there are many small regenerating trees, the contribution of understory biomass should be taken into consideration to improve total AGB estimation. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

21 pages, 4992 KiB  
Article
Combining Multi-Source Remotely Sensed Data and a Process-Based Model for Forest Aboveground Biomass Updating
by Xiaoman Lu, Guang Zheng, Colton Miller and Ernesto Alvarado
Sensors 2017, 17(9), 2062; https://doi.org/10.3390/s17092062 - 8 Sep 2017
Cited by 13 | Viewed by 5414
Abstract
Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes [...] Read more.
Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% (n = 35, p < 0.05, RMSE = 2.20 kg/m2) and 85% (n = 100, p < 0.01, RMSE = 1.71 kg/m2) of variation in field- and ALS-based forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB. Full article
Show Figures

Figure 1

Back to TopTop