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Abstract: Aboveground biomass (AGB) of shrubs and low-statured trees constitutes a substantial
portion of the total carbon pool in temperate forest ecosystems, contributing much to local biodi-
versity, altering tree-regeneration growth rates, and determining above- and belowground food
webs. Accurate quantification of AGB at the shrub layer is crucial for ecological modeling and
still remains a challenge. Several methods for estimating understory biomass, including inventory
and remote sensing-based methods, need to be evaluated against measured datasets. In this study,
we acquired 158 individual terrestrial laser scans (TLS) across 45 sites in the Yanshan Mountains
and generated metrics including leaf area and stem volume from TLS data using voxel- and non-
voxel-based approaches in both leaf-on and leaf-off scenarios. Allometric equations were applied
using field-measured parameters as an inventory approach. The results indicated that allometric
equations using crown area and height yielded results with higher accuracy than other inventory
approach parameters (R2 and RMSE ranging from 0.47 to 0.91 and 12.38 to 38.11 g, respectively). The
voxel-based approach using TLS data provided results with R2 and RMSE ranging from 0.86 to 0.96
and 6.43 to 21.03 g. Additionally, the non-voxel-based approach provided similar or slightly better
results compared to the voxel-based approach (R2 and RMSE ranging from 0.93 to 0.96 and 4.23 to
11.27 g, respectively) while avoiding the complexity of selecting the optimal voxel size that arises
during voxelization.

Keywords: understory AGB estimation; TLS; voxel size; non-voxel-based approach

1. Introduction

Aboveground biomass (AGB), an important element in forest management and poli-
cymaking [1], is defined as the total dry mass allocated to the live and dead tissues and
organs of aboveground vegetation structures [2,3]. About 80% of the total aboveground
biomass of the terrestrial ecosystem is stored within forests [4,5]. Therefore, accurate forest
biomass estimation is essential for monitoring and understanding how terrestrial ecosys-
tems function and change in response to climate change [6,7]. Understory vegetation plays
an integral role in forests, significantly affecting gross primary productivity, respiration,
and carbon and nutrient fluxes [8–10], and it is considered to be an overall indicator of
forest health [11,12].

Understory biomass estimation at a fine spatial resolution over large difficult-to-
access areas like mountain terrain remains a challenge when conducted through field
measurements [13]. The AGB of understory vegetation is most accurately measured with
destructive sampling. However, such inventory methods can be labor-intensive and time-
consuming. Thus, it is often used to obtain the AGB for a small amount of representative
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vegetation for developing allometric equations using nonlinear or linear transformation of
field-measured parameters, including diameter, height, canopy cover, etc. [14]. However,
the widely used allometric equations mainly relate to forest trees or large shrub biomass
predictions [15,16], which could undermine the estimation accuracy when applied to
low-stature trees and shrubs. Although field measurements provide reliable calibration
data for predictions [17], the applicability of allometric equations would still be affected
due to the limited sample size and range when applied at an extensive scale in forest
ecosystems [18,19]. Hence, there is a need to evaluate more efficient and nondestructive
approaches for predicting and mapping understory biomass at individual scale to better
facilitate the quantification of understory biomass.

As an active remote sensing approach, LiDAR (Light Detection and Ranging) allows
accurate measurement of distances by transmitting laser pulses and analyzing the returned
energy as a function of time [20], and it has emerged as a feasible tool for extracting crucial
forest structure parameters [21]. Over the past two decades, LiDAR developed rapidly with
multiple platforms, including satellite platforms (ICESat and GEDI, and spaceborne laser
scanning, SLS), airborne platforms including manned aircraft and drones (airborne laser
scanning, ALS), and ground platforms (terrestrial laser scanning, TLS), providing technical
support for monitoring a wide range of forest dynamics changes [22]. Airborne laser
scanning (ALS) is well-established in forestry research for characterizing three-dimensional
variation in a tree canopy structure at plot or stand level [23] and has proven to be a highly
accurate tool for assessing tree volume [24] and biomass [25] in forested stands. However,
scanning of the understory can be problematic, underestimating height and volume up to
30–50% [26,27] due to the low point density of ALS, typically less than 10 pts m−2, relative
to shrub size [28].

In comparison to ALS, terrestrial laser scanning (TLS) can collect a much higher point
cloud density (1000 pts/m2), greatly improving the measurement accuracy of vegetation
structure. Although the scanning range is limited, it is suitable for collecting 3D structures
at a fine scale and minimizing canopy occlusion in contrast with ALS [15], enabling the pos-
sibility of quantifying volume or biomass [21,29,30] and calculating leaf indices, including
the leaf area index (LAI) and leaf area density (LAD) [31–33]. The voxel-based approach
has proven to be effective in quantifying structural parameters and estimating the biomass
of trees and surface fuelbeds using TLS data [34–36]. The specification of voxel size in the
process of voxelization has proven to have a significant impact on the estimation accuracy in
previous studies, and optimal voxel size needs to be determined [37,38]. Among vegetation
complexity, subcanopy structure, and clumping effect, several factors are proposed to be
influencing the value of optimal voxel size [39,40], and measures have been taken to tackle
this problem, including limiting occlusion by conducting multiple scans and introducing
correction factors in different voxel sizes [41], yet the specification of optimal voxel size
still remains contradictory in different studies [42–44]. Here, we applied a non-voxel-based
approach as an alternative and conducted comparisons to evaluate its performance for
understory biomass estimation.

According to a previous field survey, the morphology of low-statured trees in the
Yanshan Mountains was similar to that of the tree species. Thus, inventory-based param-
eters like diameter, height, and crown area can be effective in describing their structure;
the AGB of the low-statured trees can be more accurately estimated using the inventory
method, whereas shrub species, owing to their irregular morphology and inventory pa-
rameters like basal diameter and height, are difficult to acquire and may not be effective in
describing structural information at individual scale, thus affecting accuracy in biomass
estimation [45]. Therefore, evaluating other approaches and determining a better solution
for understory quantification in the Yanshan Mountains are necessary. To achieve this goal,
the objective of this study is broken down into the following more specific objectives: (1) to
test the feasibility of field-measured parameters in estimating understory aboveground
biomass; (2) to evaluate the efficiency of using TLS metrics as predictors in biomass models
at individual scale through the voxel-based approach and evaluate the impact of voxel size
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on estimation results; and (3) to apply a non-voxel-based approach for comparison and
bypass the impact of the selection of voxel sizes in the voxelization process.

2. Materials and Methods
2.1. Study Area

The study area was the Beijing Yanshan Earth Critical Zone National Research Station
located in the University of Chinese Academy of Science, Beijing (116◦39′E, 40◦25′N), with
an elevation of approximately 50–100 m and a slope ranging from 0◦ to 45◦, covering a total
area of approximately 250 ha (Figure 1). Vegetation types in this area are temperate mixed
broadleaf–conifer forest at plains and low-altitude mountain areas and shrubs at mid- to
high-altitude mountain areas. Dominated species include Chinese Pine (Pinus tabuliformis),
Date Plum (Diospyros lotus), and Mongolian Oak (Quercus mongolica) for trees, and Spine
Jujube (Ziziphus jujuba), Vitex negundo, and small-flower Grewia (Grewia biloba) for shrubs.
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Figure 1. Study area with spatial distribution of understory vegetation plots.

2.2. TLS and Field Data Acquisition

We conducted our study targeting three common understory species, including two
dominant shrub species, namely Grewia biloba and Vitex negundo, and one low-statured
tree species, Diospyros lotus. To evaluate the accuracy and universality of the three AGB
estimation approaches at shrub level, plants in both regular and irregular morphology
were selected in both broadleaf and coniferous forests, and forty-five sampling plots were
established, with fifteen each for the three studied species. Field research was conducted
following the procedure shown in (Figure 2a) during growing seasons in 2023. All inventory
data, including basal diameter, height, crown area, crown length, and crown width, were
measured using diameter tape, and scanning was performed with a Trimble X7 terrestrial
laser scanner (Trimble Inc., Westminster, CO, USA) (Table 1). The point cloud data (PCD) for
each station were exported to PTX format, containing the scanner location and information
(coordinates and intensity) of all emitted laser pulses regardless of whether the pulses
obtained a return.
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Table 1. Trimble X7 technical specifications.

Attribute Specification

Wavelength 1550 nm, invisible
Field of View 360◦ (horizontal) × 282◦ (vertical)
Scanning Frequency >500 kHZ
Range 0.6 m–80 m
Range Accuracy 2 mm
Angular Accuracy 21′′

3D Point Accuracy 2.4 mm at 10 m, 3.5 mm at 20 m, 6.0 mm at 40 m

Due to occlusion and the difficult mountain terrains, we were required to shift the laser
scanner to various positions to ensure high point density (the point density is determined
by the set angular resolution and the distance between the scanned object and TLS sensor)
and the full coverage of data in each plot, which generally resulted in 2–4 stations of
scanning at opposite angles (Figure 2b). Coarse registration of PCD was performed using
reflective spheres and three sets of paired points selected by visual interpolation from two
corresponding stations using Trimble X7 software packages, which calculate the rotation
matrix and translation vector and register point clouds of multiple scans into a local
coordinate system with the center of the instrument at station one given a coordinate of (0,
0, 0). All leaf samples collected were first scanned using an EPSON scanner, and the leaf
area (LA) was calculated using its package software. Then, both leaf and stem samples
were oven-dried at 65 ◦C for 48 h or until a constant dry weight was reached. Separate
dry weights of green and woody biomass were recorded for biomass regression for each
sampled plant.

2.3. TLS Data Preprocessing

In the measurement of forest ecosystems, understory measurement accuracy is not sta-
ble due to scanning distance and occlusion of vegetation [29]; therefore, PCD preprocessing
is required before further analysis, which consists of denoising, segmentation, classification,
and registration (both coarse and refined). We applied the iterative closest point (ICP)
algorithm as a refined registration approach in MATLAB (R2022a) to further improve the
registration accuracy. In general, the ICP algorithm iterates over two steps: (1) find the
corresponding set k = [(p,q)] from the target point cloud p, and the source point cloud
q transformed with the current transformation matrix T, which includes a 3 × 3 rotation
matrix and a 1 × 3 translation vector. (2) Update the transformation T by minimizing an
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objective function defined over the correspondence set K [46]. In this study, we applied
RMSE as an indicator of registration accuracy (Figure 3a).
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A statistical outlier removal (SOR) filter was applied to remove most points classified
as noise (more information on the SOR filter can be found in Supplementary Materials).
Each of the forty-five resulting PCD were then segmented to a radius of 3 m to 5 m
depending on the vegetation’s growth morphology and generally larger than the field
quadrats to avoid clipping out stems that originated within the quadrats but extended
outside of them. A cloth simulation filter (CSF) was applied to generate ground points, and
the PCD of the studied plant were extracted using segmentation and a height threshold
of 1 cm above ground. All denoising, segmentation, and classification were conducted in
CloudCompare v2.12.4.

2.4. Volume and LA Calculation
2.4.1. Method Overview

The volume and LA derived from PCD were used as a proxy for the biomass of
individual plants. To contrast the estimation results using the inventory approach, we
formulated two schemes utilizing PCD: (a) estimating plant biomass with plant volume
(aggregated model) and (b) estimating leaf and stem biomass separately (separated model)
using calculated LA and stem volume from PCD, respectively (Figure 4). Three volume
models, including voxel (voxel counting), convex hull (CH), and alpha shape (AS), were
utilized and evaluated with measured biomass, while two LA calculation approaches,
namely the voxel-based method and path length distribution method, were applied and
evaluated in the process of estimating leaf biomass.

2.4.2. Volume Calculation with TLS Data

Three volume calculation methods were applied using PCD (Figure 5a) collected at
both leaf-on and leaf-off conditions. The voxel-based approach (Figure 5b) divides 3D
spaces into voxels (i.e., cubic volumes) of a given size (i.e., voxel size), which either contain
laser returns (1) or are empty (0). Such a method allows voxels to represent multiple
canopy levels (Z values) at the same X and Y coordinates. Volume can be calculated by
multiplying the number of voxels classified as (1) and the given singular voxel volume.
In recent studies, the voxel counting method has been applied successfully with TLS data
on deriving biomass, LAI estimation, and fuelbed characterization [47,48]. However, a
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lack of laser returns of the interior structure of the targeted plant due to occlusion from
densely canopied vegetation may occur, leading to empty voxels and canopy voids, thus
underestimating plant volume and causing errors in biomass estimation.
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CH (Figure 5c) was applied to PCD as an alternative to the voxel counting approach.
A convex hull is defined by an outer set of facets, embodying the entire point cloud and
filling in the inner gaps. The CH processing in our study was conducted in MATLAB
using the Quickhull algorithm. In contrast with the voxel model, CH overestimates the
true volume of the targeted plant as the inner gaps are ignored, which can be excluded
from the occlusion effect. Although both approaches can be applied with accurate results,
the appropriateness of both methods depends on the density of the targeted vegetation;
for instance, the voxel-based approach performs better when very limited parts of the
vegetation are occluded, while CH can be more suitable for occasions when scanning a
plant with complex and dense structure.

AS (Figure 5d) is a concave hull algorithm in which the simplex of the underlying
triangulation is compared with the specific α, deleting the simplex with an empty external
sphere and a square radius greater than the α. Then, the volume of the 3D object is
calculated. It should be noted that, when α is large enough, the 3D structure will be similar
to that of the CH [49]. In this study, we set the parameter α to a constant of 0.05 to exclude
smaller pores within the canopy and contain as much detailed structural information as
possible without creating discontinuity within the 3D contour. Various studies have already
used The AS algorithm for 3D reconstruction, canopy extraction, LA, and crown biomass
estimation [50,51].

2.4.3. LA Calculation with TLS Data

The theoretical basis of indirect LAI measurement is the Beer–Lambert law, also known
as Beer’s law. It was originally used to describe the attenuation of light in uniform mediums
and further extended to the light interception of homogeneous canopies [52]. The classic
relationship between the LAI and gap fraction in a specific zenith angle was established
as follows:

P(θ) = e−G(θ)×LAI/ cos (θ) (1)

where P(θ) is the gap probability in the observation zenith angle θ and G(θ) is the extinction
coefficient, expressed as the blade projection along the scanning direction. In most studies,
G(θ) is set to 0.5 based on the G(θ) value of a spherical model: when θ = 57.5◦, the effect of
the leaf angle distribution on the extinction coefficient is minimal [53].

After the voxelization of TLS data, we first extracted the gap fraction (GF) at each layer
in the Z direction following Equation (2):

GFi =
N0i
Nti

(2)

where GFi represents the gap fraction at i th layer, N0i and Nti stand for the number
of voxels classified as (0) and the total number of voxels (both empty and non-empty),
respectively. Then, based on the definition of LAI [54], the LAI and LA at individual scale
can be calculated as

LAIi = −cos(θi)× ln(GFi)

G(θ)
(3)

LA =
n

∑
i=1

LAIi × A (4)

cos(θi) refers to the zenith angle at i th layer, LAIi denotes LAI at i th layer, and A is the
crown projection area.

Several instruments were developed based on this theory for indirect LAI measure-
ment, and promising results were achieved [55]. However, the issue of the clumping effect
was found to have a considerable impact on this theory when applied to other vegetation
with complex structures. As an alternative, we applied the path length distribution method
as a non-voxel-based approach to calculate LA (LA_PLD).
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The path length distribution is defined as the probability function of the path length
within the tree crown that corresponds to the gap probability measurement. The path
length is defined as the length of a ray passing through a tree crown, and LAI can be
expressed as

LAIPATH =
∫ 1

0
(ρ × lmax)× cos(θ)× lr × Plr(lr)d(lr) (5)

where ρ is the foliage area volume density, lr, and lmax denote the maximum and relative
path length along the transect. The path length distribution function Plr(lr) meets the
following condition: ∫ 1

0
Plr(lr)d(lr) = 1 (6)

More detailed information on the path length distribution method can be found in
Hu et al. [56].

2.5. Statistical Analysis

As stated in the introduction, we applied ordinary least squares (OLS) regressions
and nonlinear least squares (NLS) regressions for biomass estimation using field-measured
parameters to address our first objective. OLS regressions were also applied to evaluate
the biomass estimation accuracy using voxel- and non-voxel-based approaches. Three
parameters were used for evaluating the goodness of fit and prediction accuracy, namely
the coefficient of determination (R2), root mean squared error (RMSE), and relative RMSE
(rRMSE), which were expressed using the following Equations (7)–(9):

R2= 1− ∑n
i=1(Mi − Pi)

2

∑n
i=1(Mi − Mmean)

2 (7)

RMSE =

√
∑n

i=1(Mmean − Pi)
2

n
(8)

rRMSE =
RMSE
Mmean

× 100% (9)

MAE =
∑n

i=1|Pi − Mi|
n

(10)

where Mi and Pi denote the i th measured and predicted parameters, respectively. Mmean
represents the mean value of a measured parameter, and n equals the sample size. Models
showing higher values of R2 and lower values of RMSE and rRMSE were considered optimal.

To evaluate the accuracy of LA calculation and total biomass estimation using the
non-voxel-based approach, we applied OLS regression using the calculated and measured
parameters, which theoretically should be close to the function of y = x; therefore, the
regression function with a slope closer to 1 and intercept near 0 denotes better calculated result.

In the process of estimating stem biomass with derived stem volume, we applied
leave-one-out cross-validation (LOOCV) for evaluation. The mean absolute error (MAE)
was applied to evaluate the prediction accuracy, which was expressed in the following
Equation (10). Statistical analysis was conducted on the R statistical package.

Correlation plots were applied for methods comparison using Pearson’s r as the corre-
lation coefficient, with measured, inventory-based, voxel-, and non-voxel-based parameters
listed in the plots from top to bottom, respectively. Larger circles and more red-inclined col-
ors indicated a higher correlation between the two parameters. Parameters with correlation
coefficients < 0.5 are represented in black.
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3. Results
3.1. Biomass Estimation Using Field-Measured Parameters

We conducted OLS between the five measured parameters and oven-dried biomass;
the results are shown below (Table 2). Detailed information on the OLS and NLS regression
is presented in Table S1.

Table 2. Biomass estimation with inventory data.

Species Measured Biomass Parameters R2, R2
Adjusted RMSE (g) rRMSE % p-Value

Grewia biloba Total biomass Crown Area 0.61, 0.58 38.11 44.62 <0.001
n = 15 Crown Length 0.51, 0.48 42.46 49.71 0.003
OLS regression Crown Width 0.61, 0.58 38.09 44.60 <0.001

Height 0.80, 0.79 26.93 31.53 <0.001
Basal Diameter 0.25, 0.19 52.61 61.60 0.056

NLS regression Basal Diameter, height 0.32, 0.26 50.30 58.89 0.029
Crown Area 0.61, 0.68 35.49 41.55 <0.001

Vitex negundo Total biomass Crown Area 0.47, 0.42 14.18 62.03 0.005
n = 15 Crown Length 0.57, 0.54 12.67 55.42 <0.001
OLS regression Crown Width 0.27, 0.21 16.62 72.70 0.045

Height 0.63, 0.61 11.76 51.44 <0.001
Basal Diameter 0.11, 0.04 18.39 80.44 0.229

NLS regression Basal Diameter, height 0.10, 0.03 18.52 81.01 0.258
Crown Area 0.48, 0.44 14.97 65.49 0.004

Diospyros lotus Total biomass Crown Area 0.88, 0.87 16.61 27.11 <0.001
n = 15 Crown Length 0.76, 0.74 23.74 38.74 <0.001
OLS regression Crown Width 0.75, 0.73 24.03 39.22 <0.001

Height 0.83, 0.81 12.50 20.40 <0.001
Basal Diameter 0.11, 0.04 46.16 75.34 0.231

NLS regression Basal Diameter, height 0.09, 0.02 46.70 76.22 0.288
Crown Area 0.91, 0.90 12.38 20.21 <0.001

Vegetation height yielded the highest accuracy among all the parameters, with the
highest R2 and lowest RMSE and rRMSE values in the three species using OLS regression,
whereas the basal diameter could not achieve satisfying results, with a p-value greater
than 0.01. The biomass of Diospyros lotus can be estimated with considerable accuracy
aside from the basal diameter, while the estimation of the two shrub species did not yield
adequate results, with most of the R2 values approximately or below 0.6 and p-values
higher than 0.01. In addition, the estimation results of Diospyros lotus were the highest in
general, with all the parameters yielding an rRMSE below 40% except for basal diameter.
In contrast, nearly all the rRMSE values were higher than in the two shrub species (except
when estimating the biomass of Grewia biloba with height). The NLS regression results
using the crown area (R2 equaled 0.48–0.91) were more accurate than regarding the basal
diameter and height (R2 equaled 0.03–0.26) for the three studied species and can provide
valid estimation results for Grewia biloba and Diospyros lotus (p-value below 0.001).

3.2. Biomass Estimation Using Voxelization Approaches

In the process of estimating biomass using the voxel-based approach, we employed
two schemes as described in Section 2.4.1, and the results are shown below (Table 3).
Detailed information on the OLS regression is presented in Figures S1–S3.
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Table 3. Voxel-based biomass estimation model.

Species Measured Biomass Parameters R2, Adjusted R2 RMSE (g) rRMSE % p-Value

Grewia biloba Total biomass Plant volume 0.87, 0.86 19.16 22.43 <0.001
n = 15 Leaf biomass LA 0.86, 0.85 3.76 25.37 <0.001

Stem biomass Stem volume 0.89, 0.87 17.62 24.96 <0.001
Total biomass Stem volume, LA 0.91, 0.90 18.18 21.29 <0.001

Vitex negundo Total biomass Plant volume 0.86, 0.84 6.43 28.13 <0.001
n = 15 Leaf biomass LA 0.65, 0.57 1.82 40.80 0.014

Stem biomass Stem volume 0.82, 0.79 7.37 40.05 <0.001
Total biomass Stem volume, LA 0.86, 0.85 7.76 33.94 <0.001

Diospyros lotus Total biomass Plant volume 0.93, 0.92 21.03 34.32 <0.001
n = 15 Leaf biomass LA 0.57, 0.50 6.36 42.19 0.013

Stem biomass Stem volume 0.93, 0.92 11.06 23.94 <0.001
Total biomass Stem volume, LA 0.96, 0.94 11.92 19.45 <0.001

The two voxelization schemes both achieved accurate estimation results compared
to the inventory parameters, especially in the two shrub species, with the R2 of Grewia
biloba increasing from 0.19–0.79 (Table 2) to 0.86–0.90 (Table 3) and RMSE decreasing from
26.93–52.16 g to 18.18–19.16 g and the R2 of Vitex negundo increasing from 0.02–0.61 to 0.84–0.85
and RMSE decreasing from 11.76–19.39 g to 6.43–7.76 g. Moreover, rRMSE decreased from
31.53–61.60% to 21.29–22.43% for Grewia biloba and 51.44–80.44% to 28.13–33.94% for Vitex
negundo. However, the result using the inventory approach with height for biomass
estimation of Diospyros lotus (20.40%) was approximate to that of the voxel-based approach
(19.45%). Of all three studied species, only the estimation result of Vitex negundo using
scheme two was lower than scheme one, with the rRMSE values equaling 33.94% and
28.13%, respectively.

We then studied the estimation accuracy in different voxel sizes for the three low-
statured vegetations (Figure 6). R2 of both Grewia biloba and Diospyros lotus experienced
an uptrend when voxel size increased from 0.2 cm, then reached the inflection point when
voxel size equaled 0.5 cm and 0.7 cm, respectively. In contrast, Vitex negundo did not share a
similar trend. Different voxel sizes led to various results, with the maximum R2 differences
equaling 0.4 for Grewia biloba, 0.08 for Vitex negundo, and 0.8 for Diospyros lotus, respectively.
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It is worth noting that scheme (b) performed slightly better than scheme (a) (R2 ranging
from 0.84–0.92 to 0.85–0.94). Therefore, in the following study, we only applied scheme
(b) to evaluate the feasibility of the non-voxel approach in estimating understory biomass
(Table 3).

3.3. Non-Voxel-Based Approach to Estimate Leaf, Stem, and Total Biomass

The estimation accuracy of LA obtained using the path length distribution method
was better than that of the voxel-based method (Figure 7a), with R2 and RMSE equal to
0.94 and 582.05 cm2 (Figure 7b). In addition, scatter points of LA_PLD were distributed
closer to the 1:1 line, indicating a closer calculation to the measured LA. LA_VGF, on the
other hand, did not achieve similar accuracy.
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Figure 7. Leaf area estimation using (a) voxel-based approach and (b) non-voxel-based approach.

CH and AS algorithms were applied to acquire the volumes of the forty-five samples
using leaf-off PCD, and stem biomass density was calculated by dividing the measured
stem biomass by volume. We hypothesized that the stem biomass density of samples from
the same species should be approximated. The box chart below (Figure 8) demonstrates the
calculation results with samples grouped by species and algorithms. The results obtained
using the preferable algorithm should be more clustered in distribution, with more samples
falling within the interquartile range (IQR), and would be utilized in the estimation of
stem biomass.
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The stem biomass density of the Vitex negundo samples illustrated a large variance of
approximately 200 g/m3 based on the two algorithms, unlike the other two species. Apart
from that, we discovered that, among the biomass densities obtained through the two
volume algorithms, the AS algorithm yielded more stable results, with lower differences
in changes within species (the variances regarding all three species are within 200 g/m3).
In contrast, the results of the CH algorithm featured a more dispersed distribution, with
differences within species reaching 900 g/m3 for Grewia biloba and 500 g/m3 for Vitex
negundo and Diospyros lotus, three to four times higher than the results calculated using the
AS algorithm. Therefore, we only utilized volumes derived using the AS algorithm in the
process of estimating stem biomass using OLS regression.

We applied LOOCV to evaluate the accuracy of regression between stem biomass and
volume (Table 4). Stem biomass can be regressed and predicted well using AS-derived
volume with R2 above 0.9 and MAE below 10 g for all three species. Estimation accuracy
was improved compared to the voxel-based approach, especially in the case of Vitex negundo,
with rRMSE decreasing from 40.05% (Table 3) to 24.02%.

Table 4. Cross-validation between stem biomass and stem volume derived using the AS algorithm.

Species Parameters Validation Method RMSE (g) rRMSE% R2 MAE (g)

Grewia biloba Stem biomass and volume LOOCV 11.22 15.90 0.95 9.23
Vitex negundo 4.42 24.02 0.92 3.47
Diospyros lotus 8.15 17.64 0.96 6.50

The total biomass estimation was aggregated using regression equations acquired
from the leaf (Figure 9a) and stem biomass (Figure 9b) estimation via non-voxel-based
approaches (Figure 9c). The estimation accuracy of leaf biomass using this method was
relatively high, with R2 values of 0.89, 0.72, and 0.93 and RMSE values of 3.22 g, 1.48 g, and
2.40 g, respectively. Although the estimation result of Vitex negundo was lower than the
other two species, there was still an improvement compared to the voxel-based method
(R2 = 0.57; RMSE = 1.82 g).The three studied species displayed promising results of R2

equaling 0.95, 0.93, and 0.96, and RMSE values equaling 11.27, 4.23, and 7.79 g. Compared
with the results obtained using the voxel-based approach, all three species reached a higher
biomass estimation accuracy, especially in the case of Vitex negundo, with the regression R2

increasing from 0.85 to 0.95. Detailed information about the fitting equations can be found
in Table S2.
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and blue dots and lines, respectively. The 1:1 dashed line indicates measured total biomass.

3.4. Comparison of Biomass Estimation Using Inventory, Voxel-, and Non-Voxel-Based Approaches

We compared the inventory data versus TLS-based methods by species using cor-
relation plots. In the example of Grewia biloba (Figure 10, abbreviations in Table 5), the



Remote Sens. 2024, 16, 1060 13 of 20

correlation between the basal diameter and total biomass was ≤0.5, making it the weakest
predictive factor among inventory parameters, whereas the correlation between height and
total biomass was 0.9, being the highest.
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Table 5. Elaboration of abbreviations in the correlation maps.

Abbreviation Elaboration

BiomassT, BiomassL, BiomassS Measured total, leaf, and stem biomass
VTV, VSV Total and stem volume derived from voxels
LA_VGF, LA_PLD Leaf area estimated from voxels and path length distribution method
ValphaSHP Stem volume derived from AS algorithms

A stronger correlation can be observed with measured biomass and TLS-derived
parameters in contrast with field-measured parameters (the correlations between VSV,
ValphaSHP, and stem biomass, and the correlations between LA_VGF, LA_PLD, LA, and
leaf biomass were all greater than 0.9). After distinguishing stems and leaves, the corre-
lations between the parameters extracted using the non-voxel-based approach and the
corresponding measured data were also slightly higher than those extracted using the
voxel-based-approach, specifically manifested as RBiomasL-LA_PLD (0.94) > RBiomasL-LA_VGF
(0.92), RBiomassS-ValphaSHP (0.98) > RBiomassS-VSV (0.93). Among the three methods, the param-
eters extracted using the non-voxel-based approach have the highest correlation with the
corresponding measured data, followed by the parameters extracted using the voxel-based
approach. Inventory parameters have the lowest correlation with the measured data.

4. Discussion
4.1. Performance of Inventory and TLS-Based Approaches

Among the three understory species, only Diospyros lotus, a low-statured tree, yielded
accurate biomass estimation results with field-measured parameters (R2 ranging from 0.73
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to 0.87; basal diameter not included) compared to the remaining shrub species (R2 ranging
from 0.21 to 0.58; basal diameter not included), with only one exception when estimating
the biomass of Grewia biloba with height (R2 = 0.79). The basal diameter, a parameter most
frequently used in other studies, however, did not yield valid results, with R2 approximated
at or below 0.3 in all three species using both OLS and NLS regressions, contradicting
the existing studies [57,58], which could possibly be due to the following reasons: (a) the
existing allometric models for plant species were developed for large tree individuals
harvested in managed forests for merchantable volume; thus, the parameters in the existing
models may not be appropriate for the quantification of AGB of short-stature shrubs grow-
ing in unmanaged ecosystems [59]. (b) There is a lack of regionally applicable allometric
models for understory vegetation located in the Yanshan Mountains; thus, the optimal
parameter(s) for biomass estimation using inventory approaches in our study remained
unclear. Both OLS and NLS regressions using crown area provided accurate estimation
results for the AGB of Diospyros lotus (R2 equaled 0.88 and 0.91, respectively). In contrast,
the estimation results of the two shrub species were less satisfying (R2 equaled 0.47 to 0.61),
indicating that the relationship between crown area and biomass may have been affected
by the greater heterogeneity in terms of species diversity; competition between neighboring
trees can influence the crown structure, leading to variability in aboveground biomass [60].
Kalita et al. [61] also suggested refining allometric equations by adding height and crown
area to the equations, which could possibly further improve the accuracy for biomass
estimation of Diospyros lotus as height and crown area were proven to be better predictor
variables in our study. However, the method for AGB estimation of shrub species required
further improvement. It is worth noting that, in a study that conducted the targeting of
three similar-condition low-statured shrubs and trees, Flade et al. [62] established allomet-
ric equations using 1D (stem length and basal diameter), 2D (cross-sectional area basal),
and 3D (volume) parameters, respectively. They discovered that volume obtained in field
measurement provided the highest accuracy of estimation, whereas estimation using other
parameters failed to deliver accurate results, with R2 values all below or approximately 0.5.

Between the two biomass estimation schemes, separating stems and leaves and esti-
mating the corresponding portion of biomass separately using stem volume and LA yielded
slightly better estimation accuracy (Table 3) as stems and leaves of the same species have
various biomass densities. In addition, there is a strong correlation between leaf area and
leaf biomass [13]; thus, separating the two vegetation components could theoretically lead
to better estimation results. By collecting leaves during in situ measurements, we further
reduced occlusion within quadrats, which helped to acquire more detailed scanning of the
target plants, thus minimizing information loss during voxelization.

4.2. Comparison of the Voxel-Based and Non-Voxel-Based Approach

The voxel-based approach obtained considerable results in estimating plant and stem
biomass for the three species (Table 3). However, we discovered that, with different species,
even different components of the same species, the optimal voxel size varies accordingly
(the optimal voxel sizes for estimating leaf, stem, and plant biomass are 9 cm, 2 cm, and
12 cm, respectively, in the case of Diospyros lotus, Figure S3). Since there are no previous
studies regarding understory biomass estimation in the Yanshan Mountains, we tested
voxel sizes ranging from 0.2 cm to 20 cm to reveal the optimal voxel size for deriving
aboveground biomass for three different vegetation types. The selection of the optimal
voxel size played an essential role in estimating biomass. The optimal voxel size represents
a compromise among factors, including the point spacing, pulse diameter, and occlusion
rate of voxels [38,39,42]. When estimating understory biomass, the optimal voxel size
should be small enough to capture detailed structural information and exclude pores
within the canopy and stems yet large enough for the ratio of an empty voxel (0) to remain
minimum to increase estimation accuracy [63]. In our study, the optimal voxel sizes for
the three species are 9 cm, 6 cm, and 12 cm, respectively (Figures S1–S3), which supported
the hypothesis that optimal voxel size for characterizing individual vegetation structure
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information using voxels may range from 5 cm to 20 cm [42]. However, other studies may
hold contradictory results, implying that the error magnitudes for the investigated point
cloud metrics and plant metrics are the lowest with scaled voxels or with the smallest
fixed-sized voxels (2 cm) [64]. In contrast, Menéndez et al. [44] denoted that a large voxel
grid of 25 cm (low number of voxels) is more efficient than finer resolutions of voxelization.
Determining the optimal voxel size based on features of PCD and mathematical approaches
should be a focus of concern.

In contrast with the voxel-based approach, we discovered that the non-voxel-based
method provided better results in leaf and stem biomass estimation (Figure 9c). In addition,
our study proved the feasibility of the path length distribution method in calculating
LA of understory vegetation at individual scale, performing better than the voxel-based
approach. The clumping effect is widely recognized as the cause affecting the accuracy
of LAI calculation as Beer’s law is utilized under the hypothesis that leaves are randomly
spatially distributed, whereas, in reality, leaves are generally clumped within canopies.
Thus, the clumping index is widely proposed for accurate LAI and LA estimation [65].
It is a variable parameter that changes with observation direction, location, scale, and
season [66]. However, the spatial heterogeneity caused by various path lengths within
canopies has not been considered using a simple clumping index. The recently proposed
path length distribution model [67] provides a novel solution for quantifying the clumping
effect. The path length is directly related to the gap probability in Beer’s law, which can be
utilized to establish a physical model to connect average gap probability with LAI using
path length distribution. As a relatively new method, its main difference from the voxel-
based method is quantifying gap fraction using path length, providing the advantages
of considering tree crown shapes and tree height distributions, which are essential for
modeling the 3D spatial distribution of leaves and within-crown clumping [53]. The
AS method was also introduced in our study for deriving stem volume as a non-voxel-
based approach. The parameter α is used to determine the level of detail of the obtained
triangulation, which controls the fineness of the generated polyhedron, directly affecting
the surface reconstruction results [68,69]. In this study, α was set to a constant of 0.05 for
the following reasons: (a) when calculating canopy volumes and structural parameters of
fruit trees, Liu et al. [49] suggested that the canopy structure was expressed in a detailed
manner, which expresses the canopy topological structure and degree of density when α

was set to 0.05; and (b) the stem biomass density shown in Figure 8 indicated a smaller
difference within species calculated using the AS algorithm, which was more in line with
our hypothesis that samples from the same species should possess biomass density of low
divergence. Our cross-validation results support that statement (Table 4).

In this study, we acquired stem PCD by collecting leaves during field observation
and conducted scanning in leaf-off conditions. However, many studies have proven the
feasibility of separating leaves and stems of understory vegetation using PCD alone, which
would significantly reduce labor force and time, rendering our non-voxel-based approach
more practical in vegetation monitoring. For instance, Arslan et al. [31] implemented the
neural network segmentation (NNS) method for wood removal in the LAI calculation
process, which involved neural network-supported classification to perform a binary
classification of PCD, successfully subsampling PCD into leaf and stem point clouds.
Olsoy et al. [70] employed a laser reflectance value as a threshold for separating wood and
leaf points when calculating the LAI of Arctic sagebrush, where points with a reflectance
value below the threshold are classified as green or photosynthetically active points.

TLS metrics permit a significant improvement in estimates obtained through allometric
biomass models since these models predict population averages for individuals with the
same characteristics at individual scale [71]. Many studies have now combined TLS and
ALS for quantifying and plotting biomass of low-statured vegetation at stand scale [72–75].
However, few studies have committed to mapping forest understory biomass at stand
scale with ALS, possibly due to occlusion from the canopy and ALS’s low point density
trait, posing challenges in calibrating TLS data and ALS data for stand scale understory
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biomass plotting. Future research initiatives should focus on testing the results obtained in
this study on other understory species in the Yanshan Mountains and achieving biomass
mapping on both overstory and understory biomass, thus acquiring full vertical structural
information about forests at stand scale. In addition, understory biomass was found to be
predominantly driven by light and nitrogen availability, and overstory characteristics could
be a potential indicator of understory biomass stock in mature temporal forests [76,77].
Therefore, discovering relationships between overstory characteristics and understory
biomass could help to calibrate ALS data and TLS data in forests, thus achieving understory
biomass mapping at stand scale and helping to quantify its effect on local nutrient cycling
and its response to global change [78].

5. Conclusions

This study utilized high-resolution PCD obtained using TLS and achieved biomass
estimation of three common understory species in the Yanshan Mountains with a non-voxel-
based approach combining the path length distribution method and the AS algorithm. The
biomass estimation results were compared with existing LiDAR-based biomass estimation
methods and inventory parameters with measured biomass from provided destructive
sampling references. The results obtained in this work highlighted the great potential of
TLS to replace field measurement in understory biomass estimation. On the one hand,
TLS permits the quantification and inclusion in the models of certain metrics that cannot
easily be assessed through inventories, including volume and LA. On the other hand, our
non-voxel-based approach successfully bypassed the objectively set parameter, voxel size,
during voxelization, which could significantly affect accuracy with different set values.

In contrast with low-statured trees, biomass estimation using field-measured parame-
ters yielded lower accuracy in the two shrub species (R2 = 0.19–0.79 and 0.02–0.61), showing
that, unlike in previous studies [79,80], inventory parameters may not be suited for estimat-
ing shrub biomass in the Yanshan Mountains. A more precise estimate could be obtained
when estimating the biomass of stems and leaves separately from volume–biomass fitting
of the entire shrub with the voxel-based approach using TLS data (with R2 values all equal
or approximate to 0.9). However, voxel sizes can have a significant impact on estimation
accuracy. The path length distribution method acquired a higher calculation accuracy of
LA than the voxel-based approach, thus leading to a better estimation result of leaf biomass
(the results of Diospyros lotus improved most dramatically with R2 increased from 0.5 to 0.9).
When estimating stem biomass, the AS algorithm yielded a stem biomass density more in
line with our hypothesis of “samples from a same species possess biomass density of low
divergence”, which in turn resulted in an accurate estimation of stem biomass (with R2

values all above 0.9 for the three species).

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/rs16061060/s1; Figure S1: Voxel-based approach for estimating biomass
of Grewia biloba with optimal voxel sizes; Figure S2: Voxel-based approach for estimating biomass
of Vitex negundo with optimal voxel sizes; Figure S3: Voxel-based approach for estimating biomass
of Diospyros lotus with optimal voxel sizes; Figure S4: Correlation map of measured biomass and
parameters used in three biomass estimation approaches (Vitex negundo); Figure S5: Correlation
map of measured biomass and parameters used in three biomass estimation approaches (Diospyros
lotus). Table S1: Fitting equations of biomass estimation using inventory approach; Table S2: Fitting
equations of biomass estimation using non-voxel-based approach.
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