Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = ultrafine diamond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9240 KiB  
Article
Fabrication and Polishing Performance of Diamond Self-Sharpening Gel Polishing Disk
by Lanxing Xu, Kaiping Feng, Liang Zhao and Binghai Lyu
Micromachines 2024, 15(1), 56; https://doi.org/10.3390/mi15010056 - 27 Dec 2023
Cited by 1 | Viewed by 1904
Abstract
A diamond gel polishing disk with self-sharpening ability is proposed to solve the problem of glazing phenomenon in the gel polishing disks. Aluminum nitride (AlN) powder with silica sol film coating (A/S powder) is added to the polishing disk, and a specific solution [...] Read more.
A diamond gel polishing disk with self-sharpening ability is proposed to solve the problem of glazing phenomenon in the gel polishing disks. Aluminum nitride (AlN) powder with silica sol film coating (A/S powder) is added to the polishing disk, and a specific solution is used to dissolve the A/S powder during polishing, forming a pore structure on the polishing disk. To realize the self-sharpening process, the dissolution property of the A/S powder is analyzed. The effect of A/S powder content on the friction and wear performance and the polishing performance of 4H-SiC wafers are investigated. Results showed that the friction coefficient of the polishing disk with 9 wt% A/S powder content is the most stable. The surface roughness Ra of 2.25 nm can be achieved, and there is no obvious glazing phenomenon on the polishing disk after polishing. The surface roughness of the 4H-SiC wafer is reduced by 38.8% compared with that of the polishing disk with no A/S powder addition after rough polishing, and the 4H-SiC wafer then obtained a damage-free surface with a Ra less than 0.4 nm after fine polishing by chemical mechanical polishing (CMP). Full article
Show Figures

Figure 1

21 pages, 3548 KiB  
Review
Application of Nano-Crystalline Diamond in Tribology
by Yue Xia, Yunxiang Lu, Guoyong Yang, Chengke Chen, Xiaojun Hu, Hui Song, Lifen Deng, Yuezhong Wang, Jian Yi and Bo Wang
Materials 2023, 16(7), 2710; https://doi.org/10.3390/ma16072710 - 28 Mar 2023
Cited by 12 | Viewed by 3459
Abstract
Nano-crystalline diamond has been extensively researched and applied in the fields of tribology, optics, quantum information and biomedicine. In virtue of its hardness, the highest in natural materials, diamond outperforms the other materials in terms of wear resistance. Compared to traditional single-crystalline and [...] Read more.
Nano-crystalline diamond has been extensively researched and applied in the fields of tribology, optics, quantum information and biomedicine. In virtue of its hardness, the highest in natural materials, diamond outperforms the other materials in terms of wear resistance. Compared to traditional single-crystalline and poly-crystalline diamonds, nano-crystalline diamond consists of disordered grains and thus possesses good toughness and self-sharpening. These merits render nano-crystalline diamonds to have great potential in tribology. Moreover, the re-nucleation of nano-crystalline diamond during preparation is beneficial to decreasing surface roughness due to its ultrafine grain size. Nano-crystalline diamond coatings can have a friction coefficient as low as single-crystal diamonds. This article briefly introduces the approaches to preparing nano-crystalline diamond materials and summarizes their applications in the field of tribology. Firstly, nano-crystalline diamond powders can be used as additives in both oil- and water-based lubricants to significantly enhance their anti-wear property. Nano-crystalline diamond coatings can also act as self-lubricating films when they are deposited on different substrates, exhibiting excellent performance in friction reduction and wear resistance. In addition, the research works related to the tribological applications of nano-crystalline diamond composites have also been reviewed in this paper. Full article
Show Figures

Figure 1

12 pages, 9323 KiB  
Article
Using a Novel Floating Grinding Process to Improve the Surface Roughness Parameter of a Magnetic Head
by Xionghua Jiang
Nanomaterials 2022, 12(16), 2763; https://doi.org/10.3390/nano12162763 - 12 Aug 2022
Cited by 1 | Viewed by 2001
Abstract
This work concentrated on the improvement of the surface roughness of a magnetic head, through the use of an ultrafine nanodiamond slurry, and a novel floating grinding process, which optimize different experimental factors required for the fine grinding of a magnetic head. The [...] Read more.
This work concentrated on the improvement of the surface roughness of a magnetic head, through the use of an ultrafine nanodiamond slurry, and a novel floating grinding process, which optimize different experimental factors required for the fine grinding of a magnetic head. The preparation of the grinding plate was confirmed by the observation of the surface change, depth detection, and flatness after ultrafine nanodiamonds were embedded into it by a Keyence high-power microscope at a 20 K magnification. The flatness was measured by a TOTO instrument. The optimum conditions were found to be a pit ratio reach of 30:70 and a plate flatness (average) of 1.8 μm. The rotation speed and vibration frequency were 0.3 and 10 rpm, respectively, for the grinding process. The morphology, size, and elemental composition of blackspots were investigated by SEM, AES, AFM, and transmission electron microscopy (TEM) analysis, which showed that the diameter of the diamonds in the slurry was important for grinding surface improvement. A novel method was proposed in this study to fine grind a magnetic head using a small-sized diamond slurry (100 nm) in conjunction with a novel float lapping method. Comparison experiments were performed under both normal conditions and improved conditions. The results show that by using the novel float lapping method with a small-sized diamond slurry, the minimum roughness was obtained. The finest roughness obtained for the slider surface reached 0.165 nm without blackspots or scratches. Full article
Show Figures

Figure 1

15 pages, 2380 KiB  
Article
Ultra-Fine Polyethylene Hernia Meshes Improve Biocompatibility and Reduce Intraperitoneal Adhesions in IPOM Position in Animal Models
by Marius J. Helmedag, Daniel Heise, Roman M. Eickhoff, Sophia M. Schmitz, Mare Mechelinck, Caroline Emonts, Tim Bolle, Thomas Gries, Ulf Peter Neumann, Christian Daniel Klink and Andreas Lambertz
Biomedicines 2022, 10(6), 1294; https://doi.org/10.3390/biomedicines10061294 - 31 May 2022
Cited by 6 | Viewed by 2804
Abstract
(1) Introduction: The intraperitoneal onlay mesh technique (IPOM) is widely used to repair incisional hernias. This method has advantages but suffers from complications due to intraperitoneal adhesion formation between the mesh and intestine. An ideal mesh minimizes adhesions and shows good biocompatibility. To [...] Read more.
(1) Introduction: The intraperitoneal onlay mesh technique (IPOM) is widely used to repair incisional hernias. This method has advantages but suffers from complications due to intraperitoneal adhesion formation between the mesh and intestine. An ideal mesh minimizes adhesions and shows good biocompatibility. To address this, newly developed multifilamentous polyethylene (PET) meshes were constructed from sub-macrophage-sized monofilaments and studied regarding biocompatibility and adhesion formation. (2) Methods: We investigated fine (FPET, 72 filaments, 11 µm diameter each) and ultra-fine multifilament (UFPET, 700 filaments, 3 µm diameter each) polyethylene meshes for biocompatibility in subcutaneous implantation in rats. Adhesion formation was analyzed in the IPOM position in rabbits. Geometrically identical mono-filamentous polypropylene (PP) Bard Soft® PP meshes were used for comparison. Histologic and immune-histologic foreign body reactions were assessed in 48 rats after 7 or 21 days (four mesh types, with two different mesh types per rat; n = 6 per mesh type). Additionally, two different mesh types each were placed in the IPOM position in 24 rabbits to compile the Diamond peritoneal adhesion score after the same timeframes. The biocompatibility and adhesion score differences were analyzed with the Kruskal–Wallis nonparametric statistical test. (3) Results: Overall, FPET and, especially, UFPET showed significantly smaller foreign body granulomas compared to PP meshes. Longer observation periods enhanced the differences. Immunohistology showed no significant differences in the cellular immune response and proliferation. UFPET demonstrated significantly reduced peritoneal adhesion formation compared to all other tested meshes after 21 days. (4) Conclusions: Overall, FPET and, especially, UFPET demonstrated their suitability for IPOM hernia meshes in animal models by improving major aspects of the foreign body reaction and reducing adhesion formation. Full article
(This article belongs to the Special Issue Biomaterial Modifications and Improvement of Their Biocompatibility)
Show Figures

Figure 1

29 pages, 8830 KiB  
Article
Modelling and Analysis of Topographic Surface Properties of Grinding Wheels
by Praveen Sridhar, Daniel Mannherz and Kristin M. de Payrebrune
J. Manuf. Mater. Process. 2021, 5(4), 121; https://doi.org/10.3390/jmmp5040121 - 10 Nov 2021
Cited by 4 | Viewed by 3933
Abstract
Grinding is one of the effective manufacturing processes with which to produce highly accurate parts with an ultra-fine surface finish. The tool used to remove materials in grinding is called the grinding wheel. Abrasive grains made of extremely hard materials (alumina, silica, cubic [...] Read more.
Grinding is one of the effective manufacturing processes with which to produce highly accurate parts with an ultra-fine surface finish. The tool used to remove materials in grinding is called the grinding wheel. Abrasive grains made of extremely hard materials (alumina, silica, cubic boron nitride, and diamond) having a definite grit size but a random shape are bonded on the circumferential surface of the grinding wheel. The fabrication process is controlled so that the wheel exhibits a prescribed structure (in the scale of soft to hard). At the same time, the distribution of grains must follow a prescribed grade (in the scale of dense to open). After the fabrication, the wheel is dressed to make sure of its material removal effectiveness, which itself depends on the surface topography. The topography is quantified by the distribution and density of active abrasive grains located on the circumferential surface, the grains’ protrusion heights, and their pore volume ratio. The prediction of the surface topography mentioned above requires a model that considers the entire manufacturing process and the influences on the grinding wheel properties. This study fills this gap in modelling the grinding wheel by presenting a surface topography model and simulation framework for the effect of the grinding wheel fabrication process on the surface topography. The simulation results have been verified by conducting experiments. This study will thus help grinding wheel manufacturers in developing more effective grinding wheels. Full article
Show Figures

Figure 1

23 pages, 29813 KiB  
Article
CNC Edge Finishing of Granite: Effect of Machining Conditions on Part Quality, Cutting Forces, and Particle Emissions
by Haithem Bahri, Victor Songmene, Jules Kouam, Agnes Marie Samuel and Fawzy Hosny Samuel
Materials 2021, 14(21), 6496; https://doi.org/10.3390/ma14216496 - 29 Oct 2021
Cited by 4 | Viewed by 2969
Abstract
Edge finishing is a shaping process that is extremely important in the granite and marble processing industries. It does not only shape the edge but also makes it shiny and durable. However, this process generates dust (fine and ultrafine particles) that can have [...] Read more.
Edge finishing is a shaping process that is extremely important in the granite and marble processing industries. It does not only shape the edge but also makes it shiny and durable. However, this process generates dust (fine and ultrafine particles) that can have a significant impact on air quality in the workshop and can put workers’ health at risk. While environmental requirements and occupational health and safety regulations are becoming increasingly stringent, at the same time, industries must continue to produce quality parts at competitive prices. The purpose of this study was to examine the surface quality, the cutting forces, and the emission of fine (FP) and ultrafine (UFP) particles during wet and dry edge finishing of granite edges as a function of the machining parameters and abrasive grit sizes. Three machining operations were investigated: roughing, semi-finishing, and finishing, using diamond abrasives (with grit sizes 45, 150, 300, 600, 1500, and 3000). The experiments were carried out on two granites, one being black and the other white. The tested spindle speeds ranged from 1500 rpm to 3500 rpm and the feed rates from 500–1500 mm/min. It was found that roughing operations produce more fine particles while finishing operations produce more ultrafine particles. These particle emissions, as well as the part quality and the cutting forces are strongly dependent on cutting speed and on the grit size of the abrasive used. Full article
(This article belongs to the Special Issue Machining and Machinability of Advanced Materials and Composites)
Show Figures

Figure 1

12 pages, 8723 KiB  
Article
Kinematic Prediction and Experimental Demonstration of Conditioning Process for Controlling the Profile Shape of a Chemical Mechanical Polishing Pad
by Hanchul Cho, Taekyung Lee, Doyeon Kim and Hyoungjae Kim
Appl. Sci. 2021, 11(10), 4358; https://doi.org/10.3390/app11104358 - 11 May 2021
Cited by 5 | Viewed by 3840
Abstract
The uniformity of the wafer in a chemical mechanical polishing (CMP) process is vital to the ultra-fine and high integration of semiconductor structures. In particular, the uniformity of the polishing pad corresponding to the tool directly affects the polishing uniformity and wafer shape. [...] Read more.
The uniformity of the wafer in a chemical mechanical polishing (CMP) process is vital to the ultra-fine and high integration of semiconductor structures. In particular, the uniformity of the polishing pad corresponding to the tool directly affects the polishing uniformity and wafer shape. In this study, the profile shape of a CMP pad was predicted through a kinematic simulation based on the trajectory density of the diamond abrasives of the diamond conditioner disc. The kinematic prediction was found to be in good agreement with the experimentally measured pad profile shape. Based on this, the shape error of the pad could be maintained within 10 μm even after performing the pad conditioning process for more than 2 h, through the overhang of the conditioner. Full article
(This article belongs to the Special Issue Chemical Mechanical Polishing and Grinding)
Show Figures

Graphical abstract

14 pages, 2789 KiB  
Article
Use of Waste from Granite Gang Saws to Manufacture Ultra-High Performance Concrete Reinforced with Steel Fibers
by Fernando López Gayarre, Jesús Suárez González, Iñigo Lopez Boadella, Carlos López-Colina Pérez and Miguel Serrano López
Appl. Sci. 2021, 11(4), 1764; https://doi.org/10.3390/app11041764 - 17 Feb 2021
Cited by 3 | Viewed by 3374
Abstract
The purpose of this study is to analyze the feasibility of using the ultra-fine waste coming from the granite cutting waste gang saws (GCW-GS) to manufacture ultra-high performance, steel-fiber reinforced concrete (UHPFRC). These machines cut granite blocks by abrasion using a steel blade [...] Read more.
The purpose of this study is to analyze the feasibility of using the ultra-fine waste coming from the granite cutting waste gang saws (GCW-GS) to manufacture ultra-high performance, steel-fiber reinforced concrete (UHPFRC). These machines cut granite blocks by abrasion using a steel blade and slurry containing fine steel grit. The waste generated by gang saws (GCW-GS) contains up to 15% Fe2O3 and up to 5% CaO. This is the main difference from the waste produced by diamond saws (GCW-D). Although this waste is available in large quantities, there are very few studies focused on recycling it to manufacture any kind of concrete. In this study, the replaced material was the micronized quartz powder of natural origin used in the manufacture of UHPRFC. The properties tested include workability, density, compressive strength, elasticity modulus, flexural strength, and tensile strength. The final conclusion is that this waste can be used to manufacture UHPFRC with a better performance than that from diamond saws given that there is an improvement of their mechanical properties up to a replacement of 35%. Even for higher percentages, the mechanical properties are within values close to those of control concrete with small decreases. Full article
(This article belongs to the Special Issue Recycling Applications of Construction Materials)
Show Figures

Figure 1

14 pages, 3167 KiB  
Article
Effect of Mechanical Surface Treatments on the Surface State and Passive Behavior of 304L Stainless Steel
by Kathleen Jaffré, Benoît Ter-Ovanessian, Hiroshi Abe, Nicolas Mary, Bernard Normand and Yutaka Watanabe
Metals 2021, 11(1), 135; https://doi.org/10.3390/met11010135 - 12 Jan 2021
Cited by 21 | Viewed by 4140
Abstract
The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using [...] Read more.
The effect of dry grinding on 304L stainless steel’s passive behavior is compared to two other surface finishing (mechanical polishing down to 2400 with SiC emery paper and 1 µm with diamond paste, respectively). The characterization of the surface state was performed using scanning electron microscopy, transmission electron microscopy, 3D optical profilometer, and X-ray diffraction. Results indicate that each surface treatment leads to different surface states. The ground specimens present an ultrafine grain layer and a strong plastic deformation underneath the surface, while an ultrafine grain layer characterizes the subsurface of the polished specimens. Grinding induces high residual compressive stresses and high roughness compared to polishing. The characterization of the passive films was performed by electrochemical impedance spectroscopy and Mott–Schottky analysis. The study shows that the semiconductor properties and the thickness of the passive films are dependent on the surface state of the 304L stainless steel. Full article
Show Figures

Figure 1

10 pages, 3853 KiB  
Article
Plasma-Assisted Synthesis of Platinum Nitride Nanoparticles under HPHT: Realized by Carbon-Encapsulated Ultrafine Pt Nanoparticles
by Jian Zhang, Lin Lin and Hang Cui
Nanomaterials 2020, 10(9), 1780; https://doi.org/10.3390/nano10091780 - 9 Sep 2020
Cited by 6 | Viewed by 3191
Abstract
Noble metal nitrides (NMNs) have important theoretical significance and potential application prospects due to their high bulk modulus and remarkable electrical properties. However, NMNs can only be synthesized under extreme conditions of ultrahigh pressure and temperature, and nanoscaled NMNs have not been reported. [...] Read more.
Noble metal nitrides (NMNs) have important theoretical significance and potential application prospects due to their high bulk modulus and remarkable electrical properties. However, NMNs can only be synthesized under extreme conditions of ultrahigh pressure and temperature, and nanoscaled NMNs have not been reported. In this work, as typical NMNs, PtNx nanoparticles were synthesized at 5 GPa and 750 K by the method of plasma-assisted laser-heating diamond anvil cell. The significantly reduced synthesis condition benefited from the ingenious design of the precursor and the remarkable chemical activity of the ultrafine Pt nanoparticles. This study, combining nanomaterials with high-pressure and -temperature (HPHT) techniques, provides a novel process for the preparation of NMN nanomaterials, and a new direction for the synthesis of superhard materials. Full article
(This article belongs to the Special Issue Advanced Noble Metal Nanoparticles)
Show Figures

Graphical abstract

Back to TopTop