Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ultrafast fiber oscillator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 356 KiB  
Opinion
Does Proprioception Involve Synchronization with Theta Rhythms by a Novel Piezo2 Initiated Ultrafast VGLUT2 Signaling?
by Balázs Sonkodi
Biophysica 2023, 3(4), 695-710; https://doi.org/10.3390/biophysica3040046 - 18 Dec 2023
Cited by 7 | Viewed by 2315
Abstract
This opinion manuscript outlines how the hippocampal theta rhythm could receive two novel peripheral inputs. One of the ways this could be achieved is through Piezo2 channels and atypical hippocampal-like metabotropic glutamate receptors coupled to phospholipase D containing proprioceptive primary afferent terminals. Accordingly, [...] Read more.
This opinion manuscript outlines how the hippocampal theta rhythm could receive two novel peripheral inputs. One of the ways this could be achieved is through Piezo2 channels and atypical hippocampal-like metabotropic glutamate receptors coupled to phospholipase D containing proprioceptive primary afferent terminals. Accordingly, activated proprioceptive terminal Piezo2 on Type Ia fibers synchronizes to the theta rhythm with the help of hippocampal Piezo2 and medial septal glutamatergic neurons. Second, after baroreceptor Piezo2 is entrained to activated proprioceptive Piezo2, it could turn on the Cav1.3 channels, which pace the heart rhythm and regulate pacemaker cells during cardiac sympathetic activation. This would allow the Cav1.3 channels to synchronize to theta rhythm pacemaker hippocampal parvalbumin-expressing GABAergic neurons. This novel Piezo2-initiated proton–proton frequency coupling through VGLUT2 may provide the ultrafast long-range signaling pathway for the proposed Piezo2 synchronization of the low-frequency glutamatergic cell surface membrane oscillations in order to provide peripheral spatial and speed inputs to the space and speed coding of the hippocampal theta rhythm, supporting locomotion, learning and memory. Moreover, it provides an ultrafast signaling for postural and orthostatic control. Finally, suggestions are made as to how Piezo2 channelopathy could impair this ultrafast communication in many conditions and diseases with not entirely known etiology, leading to impaired proprioception and/or autonomic disbalance. Full article
(This article belongs to the Special Issue Biological Effects of Ionizing Radiation)
9 pages, 2235 KiB  
Article
The Investigation on Ultrafast Pulse Formation in a Tm–Ho-Codoped Mode-Locking Fiber Oscillator
by Jingcheng Shang, Yizhou Liu, Shengzhi Zhao, Yuefeng Zhao, Yuzhi Song, Tao Li and Tianli Feng
Molecules 2021, 26(11), 3460; https://doi.org/10.3390/molecules26113460 - 7 Jun 2021
Cited by 6 | Viewed by 4123
Abstract
We experimentally investigate the formation of various pulses from a thulium–holmium (Tm–Ho)-codoped nonlinear polarization rotation (NPR) mode-locking fiber oscillator. The ultrafast fiber oscillator can simultaneously operate in the noise-like and soliton mode-locking regimes with two different emission wavelengths located around 1947 and 2010 [...] Read more.
We experimentally investigate the formation of various pulses from a thulium–holmium (Tm–Ho)-codoped nonlinear polarization rotation (NPR) mode-locking fiber oscillator. The ultrafast fiber oscillator can simultaneously operate in the noise-like and soliton mode-locking regimes with two different emission wavelengths located around 1947 and 2010 nm, which are believed to be induced from the laser transition of Tm3+ and Ho3+ ions respectively. When the noise-like pulse (NLP) and soliton pulse (SP) co-exist inside the laser oscillator, a maximum output power of 295 mW is achieved with a pulse repetition rate of 19.85-MHz, corresponding to a total single pulse energy of 14.86 nJ. By adjusting the wave plates, the fiber oscillator could also deliver the dual-NLPs or dual-SPs at dual wavelengths, or single NLP and single SP at one wavelength. The highest 61-order harmonic soliton pulse and 33.4-nJ-NLP are also realized respectively with proper design of the fiber cavity. Full article
(This article belongs to the Special Issue Advances in Lasers and Optoelectronics)
Show Figures

Figure 1

14 pages, 5648 KiB  
Review
Low Noise High-Energy Dissipative Soliton Erbium Fiber Laser for Fiber Optical Parametric Oscillator Pumping
by Mincheng Tang, Rezki Becheker, Pierre-Henry Hanzard, Aleksey Tyazhev, Jean-Louis Oudar, Arnaud Mussot, Alexandre Kudlinski, Thomas Godin and Ammar Hideur
Appl. Sci. 2018, 8(11), 2161; https://doi.org/10.3390/app8112161 - 5 Nov 2018
Cited by 6 | Viewed by 3894
Abstract
We report on a mode-locked erbium-doped fiber laser delivering highly-chirped pulses with several tens of nanojoules of energy around 1560 nm and its exploitation to efficiently pump a fiber optical parametric oscillator (FOPO), thus enabling picosecond pulse generation around 1700 nm. The laser [...] Read more.
We report on a mode-locked erbium-doped fiber laser delivering highly-chirped pulses with several tens of nanojoules of energy around 1560 nm and its exploitation to efficiently pump a fiber optical parametric oscillator (FOPO), thus enabling picosecond pulse generation around 1700 nm. The laser cavity features a high normal dispersion and mode-locking is sustained using tailored spectral filtering combined with nonlinear polarization evolution and a semiconductor saturable absorber. Numerical simulations show that the laser dynamics is governed by a strong mode-locking mechanism compensating for the large spectral and temporal pulse evolution along the cavity. In the frame of high energy picosecond pulse generation around 1700 nm, we then demonstrate that using highly-chirped pulses as pump pulses allows for the efficient tuning of the FOPO idler wavelength between 1620 and 1870 nm. In addition, satisfying noise characteristics have been achieved both for the Er-laser and the FOPO, with respective relative intensity noises (RIN) of −154 and −140 dBc/Hz, thus paving the way for the use of such sources in ultrafast instrumentation. Full article
(This article belongs to the Special Issue Erbium-doped Fiber Lasers)
Show Figures

Figure 1

30 pages, 1737 KiB  
Review
Carrier-Envelope Offset Stabilized Ultrafast Diode-Pumped Solid-State Lasers
by Stéphane Schilt and Thomas Südmeyer
Appl. Sci. 2015, 5(4), 787-816; https://doi.org/10.3390/app5040787 - 14 Oct 2015
Cited by 24 | Viewed by 10858
Abstract
Optical frequency combs have been revolutionizing many research areas and are finding a growing number of real-world applications. While initially dominated by Ti:Sapphire and fiber lasers, optical frequency combs from modelocked diode-pumped solid-state lasers (DPSSLs) have become an attractive alternative with state-of-the-art performance. [...] Read more.
Optical frequency combs have been revolutionizing many research areas and are finding a growing number of real-world applications. While initially dominated by Ti:Sapphire and fiber lasers, optical frequency combs from modelocked diode-pumped solid-state lasers (DPSSLs) have become an attractive alternative with state-of-the-art performance. In this article, we review the main achievements in ultrafast DPSSLs for frequency combs. We present the current status of carrier-envelope offset (CEO) frequency-stabilized DPSSLs based on various approaches and operating in different wavelength regimes. Feedback to the pump current provides a reliable scheme for frequency comb CEO stabilization, but also other methods with faster feedback not limited by the lifetime of the gain material have been applied. Pumping DPSSLs with high power multi-transverse-mode diodes enabled a new class of high power oscillators and gigahertz repetition rate lasers, which were initially not believed to be suitable for CEO stabilization due to the pump noise. However, this challenge has been overcome, and recently both high power and gigahertz DPSSL combs have been demonstrated. Thin disk lasers have demonstrated the highest pulse energy and average power emitted from any ultrafast oscillator and present a high potential for the future generation of stabilized frequency combs with hundreds of watts average output power. Full article
(This article belongs to the Special Issue Diode-Pumped, Ultra-Short Pulse Lasers)
Show Figures

Figure 1

17 pages, 1188 KiB  
Article
Dynamics of a Dispersion-Managed Passively Mode-Locked Er-Doped Fiber Laser Using Single Wall Carbon Nanotubes
by Norihiko Nishizawa, Lei Jin, Hiromichi Kataura and Youichi Sakakibara
Photonics 2015, 2(3), 808-824; https://doi.org/10.3390/photonics2030808 - 21 Jul 2015
Cited by 20 | Viewed by 7565
Abstract
We investigated the dynamics of a dispersion-managed, passively mode-locked, ultrashort-pulse, Er-doped fiber laser using a single-wall carbon nanotube (SWNT) device. A numerical model was constructed for analysis of the SWNT fiber laser. The initial process of passive mode-locking, the characteristics of the output [...] Read more.
We investigated the dynamics of a dispersion-managed, passively mode-locked, ultrashort-pulse, Er-doped fiber laser using a single-wall carbon nanotube (SWNT) device. A numerical model was constructed for analysis of the SWNT fiber laser. The initial process of passive mode-locking, the characteristics of the output pulse, and the dynamics inside the cavity were investigated numerically for soliton, dissipative-soliton, and stretched-pulse mode-locking conditions. The dependencies on the total dispersion and recovery time of the SWNTs were also examined. Numerical results showed similar behavior to experimental results. Full article
(This article belongs to the Special Issue Nonlinear Fiber Optics)
Show Figures

Figure 1

Back to TopTop