Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = ultra-short cationic lipopeptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2720 KiB  
Article
Synthetic Cationic Lipopeptide Can Effectively Treat Mouse Mastitis Caused by Staphylococcus aureus
by Jie Peng, Qiangsheng Lu, Lvfeng Yuan and Hecheng Zhang
Biomedicines 2023, 11(4), 1188; https://doi.org/10.3390/biomedicines11041188 - 17 Apr 2023
Cited by 9 | Viewed by 1981
Abstract
Mastitis caused by Staphylococcus aureus (S. aureus) in dairy cows is one of the most common clinical diseases in dairy cattle. Unfortunately, traditional antibiotic treatment has resulted in the emergence of drug-resistant strains of bacteria, making this disease more difficult to [...] Read more.
Mastitis caused by Staphylococcus aureus (S. aureus) in dairy cows is one of the most common clinical diseases in dairy cattle. Unfortunately, traditional antibiotic treatment has resulted in the emergence of drug-resistant strains of bacteria, making this disease more difficult to treat. Therefore, novel lipopeptide antibiotics are becoming increasingly important in treating bacterial diseases, and developing novel antibiotics is critical in controlling mastitis in dairy cows. We designed and synthesized three cationic lipopeptides with palmitic acid, all with two positive charges and dextral amino acids. The lipopeptides’ antibacterial activity against S. aureus was determined using MIC and scanning electron microscopy. The safety concentration range of lipopeptides for clinical usage was then estimated using the mouse erythrocyte hemolysis assay and CCK8 cytotoxicity. Finally, lipopeptides with high antibacterial activity and minimal cytotoxicity were selected for the treatment experiments regarding mastitis in mice. The observation of histopathological changes, bacterial tissue load and expression of inflammatory factors determined the therapeutic effects of lipopeptides on mastitis in mice. The results showed that all three lipopeptides displayed some antibacterial activity against S. aureus, with C16dKdK having a strong antibacterial impact and being able to treat the mastitis induced by S. aureus infection in mice within a safe concentration range. The findings of this study can be used as a starting point for the development of new medications for the treatment of mastitis in dairy cows. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

15 pages, 1926 KiB  
Article
Glycosylated Lipopeptides—Synthesis and Evaluation of Antimicrobial Activity and Cytotoxicity
by Karol Sikora, Marta Bauer, Sylwia Bartoszewska, Damian Neubauer and Wojciech Kamysz
Biomolecules 2023, 13(1), 172; https://doi.org/10.3390/biom13010172 - 13 Jan 2023
Cited by 3 | Viewed by 3043
Abstract
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that may be used to combat pathogens such as bacteria and fungi. USCLs consist of a few basic amino acid residues and at least one lipid moiety, usually a fatty acid chain. Generally, USCLs are [...] Read more.
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that may be used to combat pathogens such as bacteria and fungi. USCLs consist of a few basic amino acid residues and at least one lipid moiety, usually a fatty acid chain. Generally, USCLs are potent antimicrobials but their major shortcoming is a relatively high cytotoxicity and hemolytic activity. Glycopeptide antibiotics (e.g. vancomycin) are essential in combating bacterial infections and are popular in medicinal practice. However, literature concerning the effect of glycosylation of peptides on their antimicrobial activity is rather scarce. For the first time, this study highlights the effect of USCLs glycosylation on in vitro biological activity. The aim of this study was to evaluate the impact of glycosylation of a series of USCLs on antimicrobial activity, cytotoxicity and hemolytic activity. Straight-chain fatty acids (C14, C16, C18) were attached to the N-terminal amino group of tripeptides—SRR-NH2, RSR-NH2 and RRS-NH2. Two groups of the lipopeptides were synthetized, the first with unmodified L-serine (USCLs) and the other with L-serine O-glycosylated by N-acetyl-β-d-glucosamine to produce new class of glycosylated ultrashort cationic lipopeptide (gUSCLs). Both USCLs and gUSCLs were tested against planktonic and biofilm cultures of ESKAPE strains (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Candida glabrata, and hemolytic activity on human erythrocytes and cytotoxicity against the HaCaT cell line was examined. Generally, USCLs and gUSCLs proved to be active against all the tested strains. The highest activity displayed was by lipopeptides containing the C18 fatty acid. Antimicrobial, hemolytic and cytotoxic activities were mainly correlated with amino acid sequence (position of serine/glycosylated serine) and hydrophobicity of molecule and were found to be highly strain-dependent. In general, glycosylation did not guarantee an increased antimicrobial activity or a decreased hemolytic and cytotoxic activities. However, in some cases, gUSCLs proved to be superior to their USCLs analogs. The most pronounced differences were found for peptides with C18 fatty acid and serine at the first and second position against both planktonic cells and biofilm of C. glabrata, as well as the second and third position against S. aureus. It is noteworthy that gUSCLs were also more active against biofilm than were USCLs. Full article
(This article belongs to the Special Issue Nature Inspired Peptides in Medical Sciences)
Show Figures

Graphical abstract

17 pages, 2524 KiB  
Article
Antifungal Activity of Linear and Disulfide-Cyclized Ultrashort Cationic Lipopeptides Alone and in Combination with Fluconazole against Vulvovaginal Candida spp.
by Paulina Czechowicz, Damian Neubauer, Joanna Nowicka, Wojciech Kamysz and Grażyna Gościniak
Pharmaceutics 2021, 13(10), 1589; https://doi.org/10.3390/pharmaceutics13101589 - 30 Sep 2021
Cited by 9 | Viewed by 2476
Abstract
Vulvovaginal candidiasis (VVC) occurs in over 75% of women at least once during their lifetime and is an infection that significantly affects their health. Candida strains resistant to standard azole antifungal therapy and relapses of VVC are more and more common. Hypothetically, biofilm [...] Read more.
Vulvovaginal candidiasis (VVC) occurs in over 75% of women at least once during their lifetime and is an infection that significantly affects their health. Candida strains resistant to standard azole antifungal therapy and relapses of VVC are more and more common. Hypothetically, biofilm is one of the main reasons of relapses and failure of the therapy. Ultrashort cationic lipopeptides (USCLs) exhibit high antimicrobial activities. Our previous study on USCLs revealed that disulfide cyclization can result in selective antifungal compounds. Therefore, four USCL were selected and their antifungal activity were studied on 62 clinical strains isolated from VVC. The results confirmed previous premises that cyclic analogs have increased selectivity between fungal cells and keratinocytes and improved anticandidal activity compared to their linear analogs against both planktonic and biofilm cultures. On the other hand, linear lipopeptides in combination with fluconazole showed a synergistic effect. It was found that the minimum inhibitory concentrations of the tested compounds in combination with fluconazole were at least four times lower than when used separately. Our results indicate that combination therapy of VVC with USCLs and fluconazole at low non-toxic concentrations can be beneficial owing to the synergistic effect. However, further in vivo studies are needed to confirm this hypothesis. Full article
(This article belongs to the Special Issue Biofilm Busting Strategies for Eradicating Infections)
Show Figures

Figure 1

14 pages, 2137 KiB  
Article
Effects of Lipidation on a Proline-Rich Antibacterial Peptide
by Federica Armas, Adriana Di Stasi, Mario Mardirossian, Antonello A. Romani, Monica Benincasa and Marco Scocchi
Int. J. Mol. Sci. 2021, 22(15), 7959; https://doi.org/10.3390/ijms22157959 - 26 Jul 2021
Cited by 34 | Viewed by 3171
Abstract
The emergence of multidrug-resistant bacteria is a worldwide health problem. Antimicrobial peptides have been recognized as potential alternatives to conventional antibiotics, but still require optimization. The proline-rich antimicrobial peptide Bac7(1-16) is active against only a limited number of Gram-negative bacteria. It kills bacteria [...] Read more.
The emergence of multidrug-resistant bacteria is a worldwide health problem. Antimicrobial peptides have been recognized as potential alternatives to conventional antibiotics, but still require optimization. The proline-rich antimicrobial peptide Bac7(1-16) is active against only a limited number of Gram-negative bacteria. It kills bacteria by inhibiting protein synthesis after its internalization, which is mainly supported by the bacterial transporter SbmA. In this study, we tested two different lipidated forms of Bac7(1-16) with the aim of extending its activity against those bacterial species that lack SbmA. We linked a C12-alkyl chain or an ultrashort cationic lipopeptide Lp-I to the C-terminus of Bac7(1-16). Both the lipidated Bac-C12 and Bac-Lp-I forms acquired activity at low micromolar MIC values against several Gram-positive and Gram-negative bacteria. Moreover, unlike Bac7(1-16), Bac-C12, and Bac-Lp-I did not select resistant mutants in E. coli after 14 times of exposure to sub-MIC concentrations of the respective peptide. We demonstrated that the extended spectrum of activity and absence of de novo resistance are likely related to the acquired capability of the peptides to permeabilize cell membranes. These results indicate that C-terminal lipidation of a short proline-rich peptide profoundly alters its function and mode of action and provides useful insights into the design of novel broad-spectrum antibacterial agents. Full article
(This article belongs to the Special Issue Peptide Antimicrobial Agents)
Show Figures

Figure 1

42 pages, 6540 KiB  
Article
Biological and Physico-Chemical Characteristics of Arginine-Rich Peptide Gemini Surfactants with Lysine and Cystine Spacers
by Damian Neubauer, Maciej Jaśkiewicz, Marta Bauer, Agata Olejniczak-Kęder, Emilia Sikorska, Karol Sikora and Wojciech Kamysz
Int. J. Mol. Sci. 2021, 22(7), 3299; https://doi.org/10.3390/ijms22073299 - 24 Mar 2021
Cited by 17 | Viewed by 5062
Abstract
Ultrashort cationic lipopeptides (USCLs) and gemini cationic surfactants are classes of potent antimicrobials. Our recent study has shown that the branching and shortening of the fatty acids chains with the simultaneous addition of a hydrophobic N-terminal amino acid in USCLs result in [...] Read more.
Ultrashort cationic lipopeptides (USCLs) and gemini cationic surfactants are classes of potent antimicrobials. Our recent study has shown that the branching and shortening of the fatty acids chains with the simultaneous addition of a hydrophobic N-terminal amino acid in USCLs result in compounds with enhanced selectivity. Here, this approach was introduced into arginine-rich gemini cationic surfactants. l-cystine diamide and l-lysine amide linkers were used as spacers. Antimicrobial activity against planktonic and biofilm cultures of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) strains and Candida sp. as well as hemolytic and cytotoxic activities were examined. Moreover, antimicrobial activity in the presence of human serum and the ability to form micelles were evaluated. Membrane permeabilization study, serum stability assay, and molecular dynamics were performed. Generally, critical aggregation concentration was linearly correlated with hydrophobicity. Gemini surfactants were more active than the parent USCLs, and they turned out to be selective antimicrobial agents with relatively low hemolytic and cytotoxic activities. Geminis with the l-cystine diamide spacer seem to be less cytotoxic than their l-lysine amide counterparts, but they exhibited lower antibiofilm and antimicrobial activities in serum. In some cases, geminis with branched fatty acid chains and N-terminal hydrophobic amino acid resides exhibited enhanced selectivity to pathogens over human cells. Full article
(This article belongs to the Special Issue Peptide Antimicrobial Agents)
Show Figures

Graphical abstract

30 pages, 7780 KiB  
Article
Effect of Disulfide Cyclization of Ultrashort Cationic Lipopeptides on Antimicrobial Activity and Cytotoxicity
by Damian Neubauer, Maciej Jaśkiewicz, Emilia Sikorska, Sylwia Bartoszewska, Marta Bauer, Małgorzata Kapusta, Magdalena Narajczyk and Wojciech Kamysz
Int. J. Mol. Sci. 2020, 21(19), 7208; https://doi.org/10.3390/ijms21197208 - 29 Sep 2020
Cited by 18 | Viewed by 4653
Abstract
Ultrashort cationic lipopeptides (USCLs) are considered to be a promising class of antimicrobials with high activity against a broad-spectrum of microorganisms. However, the majority of these compounds are characterized by significant toxicity toward human cells, which hinders their potential application. To overcome those [...] Read more.
Ultrashort cationic lipopeptides (USCLs) are considered to be a promising class of antimicrobials with high activity against a broad-spectrum of microorganisms. However, the majority of these compounds are characterized by significant toxicity toward human cells, which hinders their potential application. To overcome those limitations, several approaches have been advanced. One of these is disulfide cyclization that has been shown to improve drug-like characteristics of peptides. In this article the effect of disulfide cyclization of the polar head of N-palmitoylated USCLs on in vitro biological activity has been studied. Lipopeptides used in this study consisted of three or four basic amino acids (lysine and arginine) and cystine in a cyclic peptide. In general, disulfide cyclization of the lipopeptides resulted in peptides with reduced cytotoxicity. Disulfide-cyclized USCLs exhibited improved selectivity between Candida sp., Gram-positive strains and normal cells in contrast to their linear counterparts. Interactions between selected USCLs and membranes were studied by molecular dynamics simulations using a coarse-grained force field. Moreover, membrane permeabilization properties and kinetics were examined. Fluorescence and transmission electron microscopy revealed damage to Candida cell membrane and organelles. Concluding, USCLs are strong membrane disruptors and disulfide cyclization of polar head can have a beneficial effect on its in vitro selectivity between Candida sp. and normal human cells. Full article
(This article belongs to the Special Issue Creation of New Antimicrobial Peptides)
Show Figures

Graphical abstract

20 pages, 1307 KiB  
Article
Ultrashort Cationic Lipopeptides–Effect of N-Terminal Amino Acid and Fatty Acid Type on Antimicrobial Activity and Hemolysis
by Damian Neubauer, Maciej Jaśkiewicz, Marta Bauer, Krzysztof Gołacki and Wojciech Kamysz
Molecules 2020, 25(2), 257; https://doi.org/10.3390/molecules25020257 - 8 Jan 2020
Cited by 40 | Viewed by 5862
Abstract
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that hypothetically may be alternatively used to combat pathogens such as bacteria and fungi. In general, USCLs consist of fatty acid chains and a few basic amino acid residues. The main shortcoming of USCLs is [...] Read more.
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that hypothetically may be alternatively used to combat pathogens such as bacteria and fungi. In general, USCLs consist of fatty acid chains and a few basic amino acid residues. The main shortcoming of USCLs is their relatively high cytotoxicity and hemolytic activity. This study focuses on the impact of the hydrophobic fatty acid chain, on both antimicrobial and hemolytic activities. To learn more about this region, a series of USCLs with different straight-chain fatty acids (C8, C10, C12, C14) attached to the tripeptide with two arginine residues were synthesized. The amino acid at the N-terminal position was exchanged for proteinogenic and non-proteinogenic amino acid residues (24 in total). Moreover, the branched fatty acid residues were conjugated to N-terminus of a dipeptide with two arginine residues. All USCLs had C-terminal amides. USCLs were tested against reference bacterial strains (including ESKAPE group) and Candida albicans. The hemolytic potential was tested on human erythrocytes. Hydrophobicity of the compounds was evaluated by RP-HPLC. Shortening of the fatty acid chain and simultaneous addition of amino acid residue at N-terminus were expected to result in more selective and active compounds than those of the reference lipopeptides with similar lipophilicity. Hypothetically, this approach would also be beneficial to other antimicrobial peptides where N-lipidation strategy was used to improve their biological characteristics. Full article
(This article belongs to the Special Issue Peptide Chemistry Ⅱ)
Show Figures

Graphical abstract

Back to TopTop