Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = ultra-long working face

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7521 KiB  
Article
Study on Optimization of Construction Parameters and Schemes for Complex Connecting Tunnels of Extra-Long Highway Tunnels Based on Field Monitoring and Numerical Simulation
by Shaohui He, Jiaxuan Liu, Dawei Huang and Jianfei Ma
Infrastructures 2025, 10(8), 197; https://doi.org/10.3390/infrastructures10080197 - 26 Jul 2025
Viewed by 241
Abstract
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, [...] Read more.
To study the optimization of construction parameters and schemes for complex connecting tunnels in extra-long highway tunnels in granite strata, the research team, relying on the construction project of the complex connecting tunnel between the Xiaolongmen Extra-long Highway Tunnel and the ultra-deep shaft, established an on-site monitoring scheme and a refined numerical simulation model. It systematically analyzed the impact of various construction parameters on the construction process of connecting tunnels and the main tunnel, and on this basis, optimized the construction scheme, improving construction efficiency. The research results show that (1) after the excavation of the connecting tunnel, the confining pressure at the top of the working face decreases rapidly, while the confining pressure on both sides increases rapidly; the extreme point of the confining pressure decrease is located at the central point at the top of the excavated working face. (2) For Class III surrounding rock excavated using the full-face blasting method, the maximum influence range of working face excavation on the stratum along the tunneling direction is approximately 4D (where D represents the excavation step). (3) The larger the excavation step of the connecting tunnel, the more obvious the stress concentration phenomenon at the central point of the working face arch crown, and the excavation step should be optimally controlled within the range of 2–3 m. (4) When explosives in the blast hole adopt decoupled charging, the ratio of borehole diameter to charge diameter can be increased to utilize the air gap to buffer the energy generated by the explosion. Full article
Show Figures

Figure 1

26 pages, 1923 KiB  
Review
Review of Energy Dissipation Mechanisms in Concrete: Role of Advanced Materials, Mix Design, and Curing Conditions
by Hadi Bahmani, Hasan Mostafaei and Davood Mostofinejad
Sustainability 2025, 17(15), 6723; https://doi.org/10.3390/su17156723 - 24 Jul 2025
Viewed by 364
Abstract
Concrete structures increasingly face dynamic loading conditions, such as seismic events, vehicular traffic, and environmental vibrations, necessitating enhanced energy dissipation capabilities. The damping ratio, a critical parameter quantifying a material’s ability to dissipate vibrational energy, is typically low in conventional concrete, prompting extensive [...] Read more.
Concrete structures increasingly face dynamic loading conditions, such as seismic events, vehicular traffic, and environmental vibrations, necessitating enhanced energy dissipation capabilities. The damping ratio, a critical parameter quantifying a material’s ability to dissipate vibrational energy, is typically low in conventional concrete, prompting extensive research into strategies for improvement. This review comprehensively explores the impact of advanced concrete types—such as Engineered Cementitious Composites (ECCs), Ultra-High-Performance Concrete (UHPC), High-Performance Concrete (HPC), and polymer concrete—on enhancing the damping behavior. Additionally, key mix design innovations, including fiber reinforcement, rubber powder incorporation, and aggregate modification, are evaluated for their roles in increasing energy dissipation. External factors, particularly curing conditions, are also discussed for their influence on the damping performance. The findings consolidate experimental and theoretical insights into how material composition, mix design, and external treatments interact to optimize dynamic resilience. To guide future research, this paper identifies critical gaps including the need for multi-scale numerical simulation frameworks, standardized damping test protocols, and long-term performance evaluation under realistic service conditions. Advancing work in material innovation, optimized mix design, and controlled curing environments will be essential for developing next-generation concretes with superior vibration control, durability, and sustainability. These insights provide a strategic foundation for applications in seismic-prone and vibration-sensitive infrastructure. Full article
(This article belongs to the Special Issue Advanced Concrete- and Cement-Based Composite Materials)
Show Figures

Figure 1

28 pages, 975 KiB  
Article
Advanced Hyena Hierarchy Architectures for Predictive Modeling of Interest Rate Dynamics from Central Bank Communications
by Tao Song, Shijie Yuan and Rui Zhong
Appl. Sci. 2025, 15(12), 6420; https://doi.org/10.3390/app15126420 - 7 Jun 2025
Viewed by 1274
Abstract
Effective analysis of central bank communications is critical for anticipating monetary policy changes and guiding market expectations. However, traditional natural language processing models face significant challenges in processing lengthy and nuanced policy documents, which often exceed tens of thousands of tokens. This study [...] Read more.
Effective analysis of central bank communications is critical for anticipating monetary policy changes and guiding market expectations. However, traditional natural language processing models face significant challenges in processing lengthy and nuanced policy documents, which often exceed tens of thousands of tokens. This study addresses these challenges by proposing a novel integrated deep learning framework based on Hyena Hierarchy architectures, which utilize sub-quadratic convolution mechanisms to efficiently process ultra-long sequences. The framework employs Delta-LoRA (low-rank adaptation) for parameter-efficient fine-tuning, updating less than 1% of the total parameters without additional inference overhead. To ensure robust performance across institutions and policy cycles, domain-adversarial neural networks are incorporated to learn domain-invariant representations, and a multi-task learning approach integrates auxiliary hawkish/dovish sentiment signals. Evaluations conducted on a comprehensive dataset comprising Federal Open Market Committee statements and European Central Bank speeches from 1977 to 2024 demonstrate state-of-the-art performance, achieving over 6% improvement in macro-F1 score compared to baseline models while significantly reducing inference latency by 65%. This work offers a powerful and efficient new paradigm for handling ultra-long financial policy texts and demonstrates the effectiveness of integrating advanced sequence modeling, efficient fine-tuning, and domain adaptation techniques for extracting timely economic signals, with the aim to open new avenues for quantitative policy analysis and financial market forecasting. Full article
(This article belongs to the Special Issue Advancements in Deep Learning and Its Applications)
Show Figures

Figure 1

16 pages, 5732 KiB  
Article
Research on the Deformation and Failure Mechanism of Flexible Formwork Walls in Gob-Side-Entry Retaining of Ultra-Long Isolated Mining Faces and Pressure Relief-Control Technology via Roof Cutting
by Heng Wang and Junqing Guo
Appl. Sci. 2025, 15(11), 5833; https://doi.org/10.3390/app15115833 - 22 May 2025
Viewed by 420
Abstract
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology [...] Read more.
To resolve the critical issues of severe deformation, structural failure, and maintenance difficulties in the advanced reuse zone of gob-side-entry retaining roadways under pillarless mining conditions in ultra-long fully mechanized top-coal caving isolated mining faces, this study proposes a surrounding rock control technology incorporating pressure relief through roof cutting. Taking the 3203 ultra-long isolated mining face at Nanyang Coal Industry as the engineering case, an integrated methodology combining laboratory experiments, theoretical analysis, numerical simulations, and industrial-scale field trials was implemented. The deformation and failure mechanism of flexible formwork walls in gob-side-entry retaining and the fundamental principles of pressure relief via roof cutting were systematically examined. The vertical stress variations in the advanced reuse zone of the retained roadway before and after roof cutting were investigated, with specific focus on the strata pressure behavior of roadways and face-end hydraulic supports on both the wide coal-pillar side and the pillarless side following roof cutting. The key findings are as follows: ① Blast-induced roof cutting reduces the cantilever beam length adjacent to the flexible formwork wall, thereby decreasing the load per unit area on the flexible concrete wall. This reduction consequently alleviates lateral abutment stress and loading in the floor heave-affected zone, achieving effective control of roadway surrounding rock stability. ② Compared with non-roof cutting, the plastic zone damage area of surrounding rock in the gob-side entry retained by flexible formwork concrete wall is significantly reduced after roof cutting, and the vertical stress on the flexible formwork wall is also significantly decreased. ③ Distinct differences exist in the distribution patterns and magnitudes of working resistance for face-end hydraulic supports between the wide coal-pillar side and the pillarless gob-side-entry retaining side after roof cutting. As the interval resistance increases, the average working resistance of hydraulic supports on the wide pillar side demonstrates uniform distribution, whereas the pillarless side exhibits a declining frequency trend in average working resistance, with an average reduction of 30% compared to non-cutting conditions. ④ After roof cutting, the surrounding rock deformation control effectiveness of the track gateway on the gob-side-entry retaining side is comparable to that of the haulage gateway on the 50 m wide coal-pillar side, ensuring safe mining of the working face. Full article
(This article belongs to the Special Issue Advances in Green Coal Mining Technologies)
Show Figures

Figure 1

20 pages, 5753 KiB  
Article
Research on the Movement of Overlying Strata in Shallow Coal Seams with High Mining Heights and Ultralong Working Faces
by Yuping Fu, Chuantian Li and Yongliang He
Appl. Sci. 2024, 14(11), 4685; https://doi.org/10.3390/app14114685 - 29 May 2024
Cited by 3 | Viewed by 971
Abstract
To study the roof movement and ground pressure evolution characteristics of an ultralong working face in a shallow coal seam with a high mining height, the Shangwan Coal Mine in the Shendong mining area was used as the research background, and the physical [...] Read more.
To study the roof movement and ground pressure evolution characteristics of an ultralong working face in a shallow coal seam with a high mining height, the Shangwan Coal Mine in the Shendong mining area was used as the research background, and the physical and mechanical parameters of the surrounding rock were determined through rock mechanics experiments. A physical simulation model was built considering the 7 m mining height of the 12301 fully mechanized working face of the Shangwan Coal Mine to simulate and study the evolutions of the movement, fracture and collapse of the coal seam, direct roof, and basic roof and overlying strata during the mining process. The mechanical characteristics of the support, mechanism of roof collapse, and changes in the working resistance of the support were analysed and simulated. The research results indicate that when mining at a height of 7 m, the direct roof and basic roof strata collapse in layers; the basic roof strata collapse backwards, the rock block arrangement is more irregular, and the range of the basic roof that can form structural rock layers extends higher. After the basic roof rock fractures, it cannot form a masonry beam structure and can only form a cantilever beam structure. The periodic fracture of the cantilever beam causes periodic pressure on the working face. These research results are of great significance for planning the further mining of shallow coal seams with high mining heights and ultralong working faces in the Shendong mining area, as well as for improving the control of overlying strata. Full article
(This article belongs to the Special Issue Advanced Methodology and Analysis in Coal Mine Gas Control)
Show Figures

Figure 1

14 pages, 4231 KiB  
Article
An AGCRN Algorithm for Pressure Prediction in an Ultra-Long Mining Face in a Medium–Thick Coal Seam in the Northern Shaanxi Area, China
by Xicai Gao, Yan Hu, Shuai Liu, Jianhui Yin, Kai Fan and Leilei Yi
Appl. Sci. 2023, 13(20), 11369; https://doi.org/10.3390/app132011369 - 17 Oct 2023
Cited by 9 | Viewed by 1552
Abstract
Due to the increase in the length of the mining face, the pressure characteristics and spatial distribution in fully-mechanized mining faces are different from those in typical mining faces, which leads to great challenges in roof management and the intelligent control of ultra-long [...] Read more.
Due to the increase in the length of the mining face, the pressure characteristics and spatial distribution in fully-mechanized mining faces are different from those in typical mining faces, which leads to great challenges in roof management and the intelligent control of ultra-long mining faces. Taking the ultra-long mining face of a medium–thick coal seam in the northern Shaanxi mining area as an example and using field monitoring data for the working resistance of the hydraulic supports, a non-linear prediction method was used to extract the features of the dynamic data sequence of the working resistance of the hydraulic supports, and a deep learning method was used to establish a pressure prediction model for ultra-long mining faces based on the adaptive graph convolutional recurrent network (AGCRN) algorithm. In the proposed model, the supports in the fully mechanized mining face were regarded as the logic nodes of a topological structure, while the time-series resistance data for the supports were regarded as data nodes on a graph. The AGCRN model was used to determine the spatiotemporal relationship between the working resistance data of adjacent hydraulic supports, thereby improving the accuracy of the proposed model. The MAE and MAPE were employed as performance evaluation indices. When the node-embedding dimension was set to 10 and the time window was set to 16, the corresponding MAE and MAPE values of the prediction model were the minimum values. Compared with the reference models (i.e., the BP, GRU, and DCRNN models), the MAE and MAPE of the AGCRN model were 38.75% and 23.49% lower, respectively, indicating that the AGCRN model effectively demonstrates high accuracy in predicting the working resistance of supports. The AGCRN model was applied in the prediction of the working resistance of the supports of the ultra-long fully mechanized mining face. The results revealed that the working resistance of the supports in the lower and upper areas was relatively small along the strike, whereas the working resistance of the supports in the middle area was large, exhibiting a zoning pattern of “low-high-low” in terms of the average working resistance. In conclusion, the proposed model provides data references for the state of the hydraulic supports, pressure identification, and intelligent control of the ultra-long mining faces of the medium–thick coal seams in northern Shaanxi. Full article
(This article belongs to the Special Issue Geographic Visualization: Evaluation and Monitoring of Geohazards)
Show Figures

Figure 1

16 pages, 9762 KiB  
Article
Determination of Hazardous Zone of Coal Spontaneous Combustion in Ultra-Long Working Face Based on the Gob Porosity Evolution and Flow Field Distribution
by Shuliang Xie, Gang Wang, Enmao Wang, Qiming Huang and Mingze Xia
Appl. Sci. 2023, 13(7), 4574; https://doi.org/10.3390/app13074574 - 4 Apr 2023
Cited by 8 | Viewed by 1879
Abstract
Coal fire remains one of the main hazards of underground work. Spontaneous coal fires cause serious casualties and property losses. At present, most of the studies on coal spontaneous combustion have been conducted on working faces shorter than 200 m. However, the ultra-long [...] Read more.
Coal fire remains one of the main hazards of underground work. Spontaneous coal fires cause serious casualties and property losses. At present, most of the studies on coal spontaneous combustion have been conducted on working faces shorter than 200 m. However, the ultra-long working face gob of shallow buried coal seam is much larger, the distribution of its flow field is more complex, and, thus, risk of spontaneous combustion in the gob is higher. Exploring the evolution law of the gob flow field of ultra-long working face to quickly determine the range of the coal spontaneous combustion hazardous zone is of great significance to the safe production of similar mines. In this study, the gas flow field distribution in the gob of an ultra-long working face was measured by buried pipeline method and oxygen concentration was used as the index. It is found that the oxygen concentration decreases with the advance of the working face. Based on the flow field distribution, the oxidation zone of the gob was determined. Meanwhile, a three-dimensional (3D) numerical model of the working face was established, and the overlying stratum collapse and porosity evolution in the gob were simulated using the particle flow software, PFC3D discrete element software, for the porosity distribution law of the gob. The obtained porosity data were then imported into FLUENT using the custom function UDF to construct a 3D grid model. The flow field distribution in the gob was then numerically simulated for the seepage and migration law of the wind flow in the gob. The results reveal an arch-shaped wind flow field distribution with a swirl shape on the intake airway side. In the strike direction, the wind flow gradually becomes weaker with the advance of the working face. In the dip direction, the wind flow seepage range on the return airway side is obviously higher than that on the intake airway side. In the vertical direction, the wind flow range in the upper gob is larger than that in the middle and lower gob. The spontaneous combustion and oxidation zone of the gob is determined to be at 140.4–313.3 m on the intake airway side, 201.2–351.6 m in the middle of the gob, and 153.2–328.1 m on the return airway side. Finally, the residual coal distribution was superimposed onto the oxygen concentration distribution to obtain the spontaneous residual coal combustion hazardous zone in the gob. Full article
(This article belongs to the Special Issue Advanced Underground Coal Mining and Ground Control Technology)
Show Figures

Figure 1

22 pages, 13304 KiB  
Article
Mechanism and Application of Hydraulic Fracturing in the High-Level Thick and Hard Gangue Layer to Improve Top Coal Caving in Fully Mechanized Caving Mining of an Ultra-Thick Coal Seam
by Hongye Luo, Shun Liang, Qiangling Yao, Yisong Hao, Xuehua Li, Furong Wang, Xiaoyu Chen and Miao Yang
Minerals 2022, 12(12), 1605; https://doi.org/10.3390/min12121605 - 14 Dec 2022
Cited by 7 | Viewed by 2036
Abstract
The thick and hard gangue layer has long been one of the key obstacles affecting the coal recovery rate in the fully mechanized top-coal caving mining of ultra-thick coal seams, and it is also one key factor restricting the development of the technology [...] Read more.
The thick and hard gangue layer has long been one of the key obstacles affecting the coal recovery rate in the fully mechanized top-coal caving mining of ultra-thick coal seams, and it is also one key factor restricting the development of the technology used for such work. In this study, to improve the poor top coal cavability and low recovery rate in fully mechanized caving mining of ultra-thick coal seams containing thick and hard gangue layers, the fully mechanized caving mining of longwall working face 42,108 of the Qinggangping Coal Mine is the engineering setting. Then, through a combination of theoretical analysis, numerical simulation, and field practice, a mechanical model of the cantilever beam with uniform load for fracture of the gangue layer is developed. Next, the mechanical action mechanism and influence of the gangue layer and thickness on the fracture of the cantilever beam are analyzed, and a method of pre-fracturing and weakening high-level thick and hard gangue layers using hydraulic fracturing technology is proposed. Finally, using RFPA2D-flow numerical simulation, the key technical parameters of hydraulic fracturing in the working face are designed and applied to field practice. The results show the following: After the high-level thick and hard gangue layer is treated by hydraulic fracturing technology, the amount of fractured gangue behind the support increases, while that of big coal blocks decreases significantly, and the overall fragmentation of top coal is at a reasonable level. In addition, after taking hydraulic fracturing technical measures during the mining period of the working face, the average recovery rate of the working face is 86.6%. This is an increase of 6.5% over the previous area without hydraulic fracturing. Full article
(This article belongs to the Special Issue Green Mining of Coal Mine in China)
Show Figures

Figure 1

11 pages, 1934 KiB  
Article
Research on Brownian Thermal Noise Limit of a Cylindrical Ultra-Stable Cavity with Support Pads
by Dongdong Jiao, Guanjun Xu, Linbo Zhang, Jing Gao, Yang Li, Ruifang Dong, Tao Liu and Shougang Zhang
Crystals 2022, 12(11), 1682; https://doi.org/10.3390/cryst12111682 - 21 Nov 2022
Cited by 1 | Viewed by 1793
Abstract
Brownian thermal noise (TN) of ultra-stable cavities (USCs) imposes a fundamental limitation on the frequency stability of ultra-narrow linewidth lasers. This work investigates the TN in cylindrical USCs with the four support pads in detail through theoretical estimation and simulation. To evaluate the [...] Read more.
Brownian thermal noise (TN) of ultra-stable cavities (USCs) imposes a fundamental limitation on the frequency stability of ultra-narrow linewidth lasers. This work investigates the TN in cylindrical USCs with the four support pads in detail through theoretical estimation and simulation. To evaluate the performance of state-of-the-art ultra-narrow linewidth lasers, we derive an expression of the TN for a cylindrical spacer according to the fluctuation–dissipation theorem, which takes into account the front face area of the spacer. This estimation is more suitable for the TN of the cylindrical USC than the previous one. Meanwhile, we perform detailed studies of the influence of the four support pads on the TN in cylindrical USCs for the first time by numerical simulations. For a 400 mm long cylindrical USC with an ultra-low expansion spacer and fused silica substrates, the displacement noise contributed from the four support pads is roughly four times that of the substrates and the GaAs/AlGaAs crystalline coating. The results show that the four support pads are the primary TN contributors under some materials and geometries of USCs. Full article
(This article belongs to the Special Issue Crystals in Laser Systems)
Show Figures

Figure 1

18 pages, 6597 KiB  
Article
An Optimal Framework for WDM Systems Using Analytical Characterization of Refractive Index-Related Nonlinear Impairments
by Muhammad Irfan, Farman Ali, Fazal Muhammad, Abdullah S. Alwadie, Adam Glowacz, Iwona Goldasz, Ryszard Mielnik, Fahad Salem Alkahtani and Hidayatullah Khan
Electronics 2021, 10(3), 221; https://doi.org/10.3390/electronics10030221 - 20 Jan 2021
Cited by 7 | Viewed by 3385
Abstract
Nonlinear effects in the optical transmission systems (OTSs) are considered as the major performance limiting factor to provide high transmission rates over ultra-long distances. As the demands for system capacity, transmission range and the number of users is increasing exponentially with the development [...] Read more.
Nonlinear effects in the optical transmission systems (OTSs) are considered as the major performance limiting factor to provide high transmission rates over ultra-long distances. As the demands for system capacity, transmission range and the number of users is increasing exponentially with the development of mobile broadband, new challenges are being faced by the backbone optical networks. Mainly, the refractive index related non-linearities (RIrNLs) need to be characterized to design an optimal OTS for error-free transmission with provision of wavelength division multiplexing (WDM) to support for multiple channels. This paper provides an estimation technique of RIrNLs for long-haul transmission and their treatment for different channel spacing and the number of channels in a WDM system operating frequency domain multiple in multiple out (FD-MIMO) equalizer based digital signal processing (DSP) receiver and microstrip Chebyshev low pass filter. The main focus of this work is to utilize the existing structure of OTS for RIrNLs treatment with a low cost solution. Thus, by varying the parameters of the third order dispersion parameters, group velocity dispersion parameters, phase modulation dispersion and nonlinear refractive index, the impact of RIrNLs is investigated in detail to enhance the transmission range and capacity of the current OTS. The proposed system is analyzed in terms of range of input power, fiber length and received power for OTS figure of merits including bit error rate (BER) and optical signal-to-noise ratio (OSNR). Using duo-binary modulation, the BER achieved in this work is <105 till 500 km range, for maximum number of 32 channels, with 100 Gbps aggregate data rate, which shows the feasibility and effectiveness of our proposed model. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

15 pages, 2308 KiB  
Article
Experimental Fitting of the Re-Scaled Balje Maps for Low-Reynolds Radial Turbomachinery
by Roberto Capata and Enrico Sciubba
Energies 2015, 8(8), 7986-8000; https://doi.org/10.3390/en8087986 - 31 Jul 2015
Cited by 16 | Viewed by 9193
Abstract
With the increasing popularity enjoyed by ultra-micro scale turbomachinery, designers are often faced with severe challenges due to the substantial phenomenological difference between the low-Reynolds fluid-dynamics in rotating or strongly curved flows and the established knowledge acquired through decades of theoretical and experimental [...] Read more.
With the increasing popularity enjoyed by ultra-micro scale turbomachinery, designers are often faced with severe challenges due to the substantial phenomenological difference between the low-Reynolds fluid-dynamics in rotating or strongly curved flows and the established knowledge acquired through decades of theoretical and experimental studies on medium and large-scale machines. The problem is complicated by the absence of an extended and reliable database that might be used for preliminary design and provide indications for scale-up or scale-down. As a result, custom-designed experimental campaigns are necessary that make the development of any new machine exceedingly costly. The situation has seen some improvement in recent years, after the publication of a sufficient number of experimental results and numerical simulations that pave the way towards a development of semi-empirical correlations. The purpose of this work is to present and discuss a preliminary and simple method to extend the currently available design maps into the small scale range (Re < 105) by introducing in the Balje charts an efficiency correction that depends on the specific speed ns. The method results in a Stodola-like formula which originates a lower-than-standard Cordier curve on the classical Balje charts. A validation with some experimental results is also presented and discussed. Though the agreement is more than satisfactory, it must be stressed that the method provides only approximate results, and thus it must be considered as an evolving temporary solution, that needs to be updated as long as larger series of (numerical or physical) experimental results become available. Full article
Show Figures

Graphical abstract

Back to TopTop