Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = ultra-fast laser processing of polymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4096 KB  
Article
Fs-Laser-Induced Micro- and Nanostructures on Polycarbonate and Cellulose Acetate Butyrate for Cell Alignment
by Lukas Wagner, Werner Baumgartner, Agnes Weth, Sebastian Lifka and Johannes Heitz
Appl. Sci. 2025, 15(12), 6754; https://doi.org/10.3390/app15126754 - 16 Jun 2025
Viewed by 737
Abstract
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type [...] Read more.
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type of glial cell that can support the regeneration of nerve pathways by guiding the neuronal axons in the direction of their alignment. Polymer surfaces, i.e., polycarbonate (PC) or cellulose acetate butyrate (CAB), were exposed to the beam of a 1040 nm Yb-based amplified fs-laser system with a pulse length of about 350 fs. With appropriate parameters, the laser exposure resulted in a surface topography with oriented micro-grooves, which, for PC, were covered with nano-ripples. Schwann cell growth on these substrates was inspected after 3 to 5 days of cultivation by means of scanning electron microscopy (SEM). We show that Schwann cells can grow in a certain direction, predetermined by micro-groove or nano-ripple orientation. In contrast, cells cultivated on randomly oriented nanofibers or unstructured surfaces show an omnidirectional growth behavior. This method may be used in the future to produce nerve conduits for the treatment of injuries to the peripheral nervous system. Full article
(This article belongs to the Special Issue Ultrafast and Nonlinear Laser Applications)
Show Figures

Figure 1

15 pages, 4776 KB  
Article
Stack and Structure: Ultrafast Lasers for Additive Manufacturing of Thin Polymer Films for Medical Applications
by Dominic Bartels, Yvonne Reg, Mahboobeh Borandegi, Maximilian Marschall, Alexander Sommereyns and Michael Schmidt
J. Manuf. Mater. Process. 2025, 9(4), 125; https://doi.org/10.3390/jmmp9040125 - 8 Apr 2025
Viewed by 1560
Abstract
Overcoming the limitations of powder-based additive manufacturing processes is a crucial aspect for the manufacturing of patient-specific sophisticated implants with tailored properties. Within this work, a novel manufacturing process for the fabrication of polymer-based implants is proposed. This manufacturing process is inspired by [...] Read more.
Overcoming the limitations of powder-based additive manufacturing processes is a crucial aspect for the manufacturing of patient-specific sophisticated implants with tailored properties. Within this work, a novel manufacturing process for the fabrication of polymer-based implants is proposed. This manufacturing process is inspired by the laminated object manufacturing technology and is based on using thin films as raw material, which are processed using an ultrafast laser source. Utilizing thin films as a starting material helps to avoid powder contamination during additive manufacturing, thus supporting the generation of internal cavities that can be filled with secondary phases. Additionally, the use of medical materials mitigates the burden of a later certification of potential implants. Furthermore, the ultrafast laser supports the generation of highly resolved structures smaller than the average layer thickness (from 50 to 100 µm) through material ablation. These structures can be helpful to obtain progressive part properties or a targeted stress flow, as well as a specified release of secondary phases (e.g., hydrogels) upon load. Within this work, first investigations on the joining, cutting, and structuring of thin polymer films with layer thickness of between 50 and 100 µm using a ps-pulsed laser are reported. It is shown that thin film sizes of around 50 µm could be structured, joined, and cut successfully using ultrafast lasers emitting in the NIR spectral range. Full article
Show Figures

Figure 1

15 pages, 11206 KB  
Article
Investigation of Heat Accumulation in Femtosecond Laser Drilling of Carbon Fiber-Reinforced Polymer
by Yaoyao Li, Guangyu He, Hongliang Liu and Mingwei Wang
Micromachines 2023, 14(5), 913; https://doi.org/10.3390/mi14050913 - 23 Apr 2023
Cited by 14 | Viewed by 3727
Abstract
Carbon fiber-reinforced polymer (CFRP) has indispensable applications in the aerospace field because of its light weight, corrosion resistance, high specific modulus and high specific strength, but its anisotropy brings great difficulties to precision machining. Delamination and fuzzing, especially the heat-affected zone (HAZ), are [...] Read more.
Carbon fiber-reinforced polymer (CFRP) has indispensable applications in the aerospace field because of its light weight, corrosion resistance, high specific modulus and high specific strength, but its anisotropy brings great difficulties to precision machining. Delamination and fuzzing, especially the heat-affected zone (HAZ), are the difficulties that traditional processing methods cannot overcome. In this paper, single-pulse and multi-pulse cumulative ablation experiments and drilling of CFRP have been carried out using the characteristics of a femtosecond laser pulse, which can realize precision cold machining. The results show that the ablation threshold is 0.84 J/cm2 and the pulse accumulation factor is 0.8855. On this basis, the effects of laser power, scanning speed and scanning mode on the heat-affected zone and drilling taper are further studied, and the underlying mechanism of drilling is analyzed. By optimizing the experimental parameters, we obtained the HAZ < 10 μm, a cylindrical hole with roundness > 0.95 and taper < 5°. The research results confirm that ultrafast laser processing is a feasible and promising method for CFRP precision machining. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication)
Show Figures

Figure 1

16 pages, 4560 KB  
Article
Ultrafast Laser Patterning of Metals Commonly Used in Medical Industry: Surface Roughness Control with Energy Gradient Pulse Sequences
by Luca Leggio, Yoan Di Maio, Alina Pascale-Hamri, Gregory Egaud, Stephanie Reynaud, Xxx Sedao and Cyril Mauclair
Micromachines 2023, 14(2), 251; https://doi.org/10.3390/mi14020251 - 19 Jan 2023
Cited by 8 | Viewed by 3474
Abstract
Ultrafast laser ablation is widely used as a versatile method for accurate micro-machining of polymers, glasses and metals for a variety of industrial and biomedical applications. We report on the use of a novel process parameter, the modulation of the laser pulse energy [...] Read more.
Ultrafast laser ablation is widely used as a versatile method for accurate micro-machining of polymers, glasses and metals for a variety of industrial and biomedical applications. We report on the use of a novel process parameter, the modulation of the laser pulse energy during the multi-scan texturing of surfaces. We show that this new and straightforward control method allows us to attain higher and lower roughness (Ra) values than the conventional constant pulse energy irradiation sequence. This new multi-scanning laser ablation strategy was conducted on metals that are commonly used in the biomedical industry, such as stainless steel, titanium, brass and silver samples, using a linear (increasing or decreasing) gradient of pulse energy, i.e., varying the pulse energy across successive laser scans. The effects of ablation were studied in terms of roughness, developed interfacial area ratio, skewness and ablation efficiency of the processed surfaces. Significantly, the investigation has shown a global trend for all samples that the roughness is minimum when a decreasing energy pulse sequence is employed, i.e., the irradiation sequence ends up with the applied laser fluences close to threshold laser fluences and is maximum with increasing energy distribution. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis on single craters with the three different energy deposition conditions revealed a chaotic and random material redistribution in the cases of uniform and increasing energy distributions and the presence of regular laser-induced periodic surface structures (LIPSS) at the bottom of the ablation region in the case of decreasing energy distribution. It is also shown that the ablation efficiency of the ablated surfaces does not significantly change between the three cases. Therefore, this novel energy control strategy permits the control of the roughness of the processed surfaces without losing the ablation efficiency. Full article
Show Figures

Figure 1

13 pages, 1845 KB  
Article
Femtosecond UV Laser Ablation Characteristics of Polymers Used as the Matrix of Astronautic Composite Material
by Mingyu Lu, Ming Zhang, Kaihu Zhang, Qinggeng Meng and Xueqiang Zhang
Materials 2022, 15(19), 6771; https://doi.org/10.3390/ma15196771 - 29 Sep 2022
Cited by 13 | Viewed by 3134
Abstract
Ultrafast laser processing has recently emerged as a new tool for processing fiber-reinforced polymer (FRP) composites. In the astronautic industry, the modified epoxy resin (named 4211) and the modified cyanate ester resin (known as BS-4) are two of the most widely used polymers [...] Read more.
Ultrafast laser processing has recently emerged as a new tool for processing fiber-reinforced polymer (FRP) composites. In the astronautic industry, the modified epoxy resin (named 4211) and the modified cyanate ester resin (known as BS-4) are two of the most widely used polymers for polymer-based composites. To study the removal mechanism and ablation process of different material components during the ultrafast laser processing of FRPs, we isolated the role of the two important polymers from their composites by studying their femtosecond UV laser (260 fs, 343 nm) ablation characteristics for controllable machining and understanding the related mechanisms. Intrinsic properties for the materials’ transmission spectrum, the absorption coefficient and the optical bandgap (Eg), were measured, derived, and compared. Key parameters for controllable laser processing, including the ablation threshold (Fth), energy penetration depth (δeff), and absorbed energy density (Eabs) at the ablation threshold, as well as their respective “incubation” effect under multiple pulse excitations, were deduced analytically. The ablation thresholds for the two resins, derived from both the diameter-regression and depth-regression techniques, were compared between resins and between techniques. An optical bandgap of 3.1 eV and 2.8 eV for the 4211 and BS-4 resins, respectively, were obtained. A detectable but insignificant-to-ablation difference in intrinsic properties and ablation characteristics between the two resins was found. A systematic discrepancy, by a factor of 30~50%, between the two techniques for deriving ablation thresholds was shown and discussed. For the 4211 resin ablated by a single UV laser pulse, a Fth of 0.42 J/cm2, a δeff of 219 nm, and an Eabs of 18.4 kJ/cm3 was suggested, and they are 0.45 J/cm2, 183 nm, and 23.2 kJ/cm3, respectively, for the BS-4 resin. The study may shed light on the materials’ UV laser processing, further the theoretical modeling of ultrafast laser ablation, and provide a reference for the femtosecond UV laser processing characteristics of FRPs for the future. Full article
(This article belongs to the Special Issue Laser Micro/Nanofabrication and Related Applications)
Show Figures

Figure 1

11 pages, 1649 KB  
Review
Dendronized Hyperbranched Polymer: A New Architecture for Second-Order Nonlinear Optics
by Jiaxin Liu and Wenbo Wu
Symmetry 2022, 14(5), 882; https://doi.org/10.3390/sym14050882 - 26 Apr 2022
Cited by 6 | Viewed by 2786
Abstract
Organic/polymeric second-order nonlinear optical (NLO) materials, which rely on the poling-induced non-centrosymmetric arrangement of NLO chromophores, have played a very important role in laser technology and optical fiber communication, due to their ultra-fast response speed, excellent machining performance and low dielectric constant. However, [...] Read more.
Organic/polymeric second-order nonlinear optical (NLO) materials, which rely on the poling-induced non-centrosymmetric arrangement of NLO chromophores, have played a very important role in laser technology and optical fiber communication, due to their ultra-fast response speed, excellent machining performance and low dielectric constant. However, the NLO chromophores have the large dipole moments with strong intramolecular charge transfer, which lead to the intermolecular electrostatic interactions to tend to the centrosymmetric arrangement and decrease the poling efficiency. Since the special three-dimensional spatial separation can minimize these strong intermolecular electrostatic interactions during poling process, dendrimers and hyperbranched polymers have been considered as better topology for the next generation of highly efficient NLO materials. In 2013, by the attachment of low generation dendrimers to the hyperbranched backbone, a new dendritic architecture of dendronized hyperbranched polymer (DHP) was proposed for improving the comprehensive performance of NLO materials. Recent results showed many advantages of DHPs in NLO field, such as easy syntheses, large NLO coefficients and high orientation stability, etc. In this review, the latest advancement of DHPs, including the design principle, synthesis, as well as their application as NLO materials is summarized. The new opportunities arising from DHPs are also summarized in the future perspective. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

17 pages, 5632 KB  
Article
Femtosecond Laser Drilling of Cylindrical Holes for Carbon Fiber-Reinforced Polymer (CFRP) Composites
by Hao Jiang, Caiwen Ma, Ming Li and Zhiliang Cao
Molecules 2021, 26(10), 2953; https://doi.org/10.3390/molecules26102953 - 16 May 2021
Cited by 58 | Viewed by 6827
Abstract
Ultrafast laser drilling has been proven to effectively reduce the heat-affected zone (HAZ) of carbon fiber-reinforced polymer (CFRP) composites. However, previous research mainly focused on the effects of picosecond laser parameters on CFRP drilling. Compared with a picosecond laser, a femtosecond laser can [...] Read more.
Ultrafast laser drilling has been proven to effectively reduce the heat-affected zone (HAZ) of carbon fiber-reinforced polymer (CFRP) composites. However, previous research mainly focused on the effects of picosecond laser parameters on CFRP drilling. Compared with a picosecond laser, a femtosecond laser can achieve higher quality CFRP drilling due to its smaller pulse width, but there are few studies on the effects of femtosecond laser parameters on CFRP drilling. Moreover, the cross-sectional taper of CFRP produced by laser drilling is very large. This paper introduces the use of the femtosecond laser to drill cylindrical holes in CFRP. The effect of laser power, rotational speed of the laser, and number of spiral passes on HAZ and ablation depth in circular laser drilling and spiral laser drilling mode was studied, respectively. It also analyzed the forming process of the drilling depth in the spiral drilling mode and studied the influence of laser energy and drilling feed depth on the holes’ diameters and the taper. The experimental results show that the cylindrical hole of CFRP with a depth-to-diameter ratio of about 3:1 (taper < 0.32, HAZ < 10 m) was obtained by using femtosecond laser and a spiral drilling apparatus. Full article
(This article belongs to the Special Issue Advances in Lasers and Optoelectronics)
Show Figures

Figure 1

12 pages, 2161 KB  
Article
The Role of Thermal Accumulation on the Fabrication of Diffraction Gratings in Ophthalmic PHEMA by Ultrashort Laser Direct Writing
by Daniel Sola, Javier R. Vázquez de Aldana and Pablo Artal
Polymers 2020, 12(12), 2965; https://doi.org/10.3390/polym12122965 - 11 Dec 2020
Cited by 12 | Viewed by 2992
Abstract
The fabrication of diffraction gratings by ultrashort direct laser writing in poly-hydroxyethyl-methacrylate (PHEMA) polymers used as soft contact lenses is reported. Diffraction gratings were inscribed by focusing laser radiation 100 µm underneath the surface of the samples. Low- and high-repetition rate Ti:sapphire lasers [...] Read more.
The fabrication of diffraction gratings by ultrashort direct laser writing in poly-hydroxyethyl-methacrylate (PHEMA) polymers used as soft contact lenses is reported. Diffraction gratings were inscribed by focusing laser radiation 100 µm underneath the surface of the samples. Low- and high-repetition rate Ti:sapphire lasers with 120 fs pulsewidth working at 1 kHz and 80 MHz respectively were used to assess the role of thermal accumulation on microstructural and optical characteristics. Periodic patterns were produced for different values of repetition rate, pulse energy, laser wavelength, distance between tracks, and scanning speed. Compositional and structural modifications of the processed areas were studied by micro-Raman spectroscopy showing that under certain parameters, thermal accumulation may result in local densification. Far-field diffraction patterns were recorded for the produced gratings to assess the refractive index change induced in the processed areas. Full article
(This article belongs to the Special Issue Advances in Laser–Polymer Interaction for Functional Applications)
Show Figures

Graphical abstract

11 pages, 2950 KB  
Article
Charge Accumulation of Amplified Spontaneous Emission in a Conjugated Polymer Chain and Its Dynamical Phonon Spectra
by Zhe Lin, Jiahao Chen, Yusong Zhang, Jianguo Shen, Sheng Li and Thomas F. George
Molecules 2020, 25(13), 3003; https://doi.org/10.3390/molecules25133003 - 30 Jun 2020
Viewed by 2245
Abstract
In this article, the detailed photoexcitation dynamics which combines nonadiabatic molecular dynamics with electronic transitions shows the occurrence of amplified spontaneous emission (ASE) in conjugated polymers, accompanied by spontaneous electric polarization. The elaborate molecular dynamic process of ultrafast photoexcitation can be described as [...] Read more.
In this article, the detailed photoexcitation dynamics which combines nonadiabatic molecular dynamics with electronic transitions shows the occurrence of amplified spontaneous emission (ASE) in conjugated polymers, accompanied by spontaneous electric polarization. The elaborate molecular dynamic process of ultrafast photoexcitation can be described as follows: Continuous external optical pumping (laser of 70 µJ/cm2) not only triggers the appearance of an instantaneous four-level electronic structure but causes population inversion for ASE as well. At the same time, the phonon spectrum of the conjugated polymer changes, and five local infrared lattice vibrational modes form at the two ends, which break the original symmetry in the system and leads to charge accumulation at the ends of the polymer chain without an external electric field. This novel phenomenon gives a brand-new avenue to explain how the lattice vibrations play a role in the evolution of the stimulated emission, which leads to an ultrafast effect in solid conjugated polymers. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

10 pages, 3611 KB  
Article
Femtosecond Optical Annealing Induced Polymer Melting and Formation of Solid Droplets
by Jinghui Yang, Cuiying Huang and Xinping Zhang
Polymers 2019, 11(1), 128; https://doi.org/10.3390/polym11010128 - 13 Jan 2019
Cited by 1 | Viewed by 3523
Abstract
Interaction between femtosecond laser pulses with polymeric thin films induced transient optical annealing of the polymer molecules. Melting of the polymer films took place during the transient annealing process, so that a solid-liquid-solid phase transition process was observed. Ultrafast cooling of the melting [...] Read more.
Interaction between femtosecond laser pulses with polymeric thin films induced transient optical annealing of the polymer molecules. Melting of the polymer films took place during the transient annealing process, so that a solid-liquid-solid phase transition process was observed. Ultrafast cooling of the melting polymer produced solidified droplets. Microscopic and spectroscopic characterization revealed that the polymer molecules were rearranged with preferable H-aggregation to reach the lowest formation energy during the melting process. Intermolecular coupling was enhanced due to the modified molecular arrangement. This observation of melting of polymeric semiconductors due to the interaction with femtosecond light pulses is potentially important for better understanding laser-matter interactions and for exploring organic optoelectronic devices through special material processing. Full article
Show Figures

Graphical abstract

22 pages, 10164 KB  
Review
Biomimetic Liquid-Repellent Surfaces by Ultrafast Laser Processing
by Elena Fadeeva and Boris Chichkov
Appl. Sci. 2018, 8(9), 1424; https://doi.org/10.3390/app8091424 - 21 Aug 2018
Cited by 27 | Viewed by 6201
Abstract
This review is focused on the realization of liquid-repellent surfaces, inspired by two biological models: “dry” superhydrophobic leaves and “slippery” liquid-repellent carnivorous plants using ultrafast laser processing. After a short introduction to a biomimetic development process, an overview of the laser-fabricated structures, which [...] Read more.
This review is focused on the realization of liquid-repellent surfaces, inspired by two biological models: “dry” superhydrophobic leaves and “slippery” liquid-repellent carnivorous plants using ultrafast laser processing. After a short introduction to a biomimetic development process, an overview of the laser-fabricated structures, which were intensively used for the realization of biomimetic “dry” and “slippery” liquid-repellent surfaces, is given. The influence of process parameters on the structure morphology is discussed. A summary of superhydrophobic and liquid-repellent modifications of different materials (metals, semiconductors, and polymers), including wettability characteristics and processing details, is provided. The technological applications of laser-structured liquid-repellent surfaces are discussed. Full article
(This article belongs to the Special Issue Biomimetic Laser Processing)
Show Figures

Figure 1

26 pages, 5614 KB  
Review
Ultrafast Laser Pulses for Structuring Materials at Micro/Nano Scale: From Waveguides to Superhydrophobic Surfaces
by Daniel S. Correa, Juliana M. P. Almeida, Gustavo F. B. Almeida, Marcos R. Cardoso, Leonardo De Boni and Cleber R. Mendonça
Photonics 2017, 4(1), 8; https://doi.org/10.3390/photonics4010008 - 31 Jan 2017
Cited by 38 | Viewed by 10788
Abstract
The current demand for fabricating optical and photonic devices displaying high performance, using low-cost and time-saving methods, prompts femtosecond (fs)-laser processing as a promising methodology. High and low repetition femtosecond lasers enable surface and/or bulk modification of distinct materials, which can be used [...] Read more.
The current demand for fabricating optical and photonic devices displaying high performance, using low-cost and time-saving methods, prompts femtosecond (fs)-laser processing as a promising methodology. High and low repetition femtosecond lasers enable surface and/or bulk modification of distinct materials, which can be used for applications ranging from optical waveguides to superhydrophobic surfaces. Herein, some fundamental aspects of fs-laser processing of materials, as well as the basics of their most common experimental apparatuses, are introduced. A survey of results on polymer fs-laser processing, resulting in 3D waveguides, electroluminescent structures and active hybrid-microstructures for luminescence or biological microenvironments is presented. Similarly, results of fs-laser processing on glasses, gold and silicon to produce waveguides containing metallic nanoparticles, analytical chemical sensors and surface with modified features, respectively, are also described. The complexity of fs-laser micromachining involves precise control of material properties, pushing ultrafast laser processing as an advanced technique for micro/nano devices. Full article
(This article belongs to the Special Issue Ultrafast Photonics and Attosecond Sciences)
Show Figures

Figure 1

Back to TopTop