Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = two-electron repulsion integrals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 740 KB  
Article
GPU-Accelerated Fock Matrix Computation with Efficient Reduction
by Satoki Tsuji, Yasuaki Ito, Haruto Fujii, Nobuya Yokogawa, Kanta Suzuki, Koji Nakano, Victor Parque and Akihiko Kasagi
Appl. Sci. 2025, 15(9), 4779; https://doi.org/10.3390/app15094779 - 25 Apr 2025
Cited by 2 | Viewed by 1549
Abstract
In quantum chemistry, constructing the Fock matrix is essential to compute Coulomb interactions among atoms and electrons and, thus, to determine electron orbitals and densities. In the fundamental framework of quantum chemistry such as the Hartree–Fock method, the iterative computation of the Fock [...] Read more.
In quantum chemistry, constructing the Fock matrix is essential to compute Coulomb interactions among atoms and electrons and, thus, to determine electron orbitals and densities. In the fundamental framework of quantum chemistry such as the Hartree–Fock method, the iterative computation of the Fock matrix is a dominant process, constituting a critical computational bottleneck. Although the Fock matrix computation has been accelerated by parallel processing using GPUs, the issue of performance degradation due to memory contention remains unresolved. This is due to frequent conflicts of atomic operations accessing the same memory addresses when multiple threads update the Fock matrix elements concurrently. To address this issue, we propose a parallel algorithm that efficiently and suitably distributes the atomic operations; and significantly reduces the memory contention by decomposing the Fock matrix into multiple replicas, allowing each GPU thread to contribute to different replicas. Experimental results using a relevant set/configuration of molecules on an NVIDIA A100 GPU show that our approach achieves up to a 3.75× speedup in Fock matrix computation compared to conventional high-contention approaches. Furthermore, our proposed method can also be readily combined with existing implementations that reduce the number of atomic operations, leading to a 1.98× improvement. Full article
(This article belongs to the Special Issue Data Structures for Graphics Processing Units (GPUs))
Show Figures

Figure 1

30 pages, 1684 KB  
Article
Efficient GPU Implementation of the McMurchie–Davidson Method for Shell-Based ERI Computations
by Haruto Fujii, Yasuaki Ito, Nobuya Yokogawa, Kanta Suzuki, Satoki Tsuji, Koji Nakano, Victor Parque and Akihiko Kasagi
Appl. Sci. 2025, 15(5), 2572; https://doi.org/10.3390/app15052572 - 27 Feb 2025
Cited by 4 | Viewed by 1995
Abstract
Quantum chemistry offers the formal machinery to derive molecular and physical properties arising from (sub)atomic interactions. However, as molecules of practical interest are largely polyatomic, contemporary approximation schemes such as the Hartree–Fock scheme are computationally expensive due to the large number of electron [...] Read more.
Quantum chemistry offers the formal machinery to derive molecular and physical properties arising from (sub)atomic interactions. However, as molecules of practical interest are largely polyatomic, contemporary approximation schemes such as the Hartree–Fock scheme are computationally expensive due to the large number of electron repulsion integrals (ERIs). Central to the Hartree–Fock method is the efficient computation of ERIs over Gaussian functions (GTO-ERIs). Here, the well-known McMurchie–Davidson method (MD) offers an elegant formalism by incrementally extending Hermite Gaussian functions and auxiliary tabulated functions. Although the MD method offers a high degree of versatility to acceleration schemes through Graphics Processing Units (GPUs), the current GPU implementations limit the practical use of supported values of the azimuthal quantum number. In this paper, we propose a generalized framework capable of computing GTO-ERIs for arbitrary azimuthal quantum numbers, provided that the intermediate terms of the MD method can be stored. Our approach benefits from extending the MD recurrence relations through shells, batches, and triple-buffering of the shared memory, and ordering similar ERIs, thus enabling the effective parallelization and use of GPU resources. Furthermore, our approach proposes four GPU implementation schemes considering the suitable mappings between Gaussian basis and CUDA blocks and threads. Our computational experiments involving the GTO-ERI computations of molecules of interest on an NVIDIA A100 Tensor Core GPU (NVIDIA, Santa Clara, CA, USA) have revealed the merits of the proposed acceleration schemes in terms of computation time, including up to a 72× improvement over our previous GPU implementation and up to a 4500× speedup compared to a naive CPU implementation, highlighting the effectiveness of our method in accelerating ERI computations for both monatomic and polyatomic molecules. Our work has the potential to explore new parallelization schemes of distinct and complex computation paths involved in ERI computation. Full article
(This article belongs to the Special Issue Data Structures for Graphics Processing Units (GPUs))
Show Figures

Figure 1

20 pages, 5998 KB  
Article
The Effect of Sodium Hexametaphosphate on the Dispersion and Polishing Performance of Lanthanum–Cerium-Based Slurry
by Yan Mei, Wenjuan Chen and Xuean Chen
Materials 2024, 17(19), 4901; https://doi.org/10.3390/ma17194901 - 6 Oct 2024
Cited by 3 | Viewed by 2681
Abstract
A lanthanum–cerium-based abrasive composed of CeO2, LaOF, and LaF3 was commercially obtained. The effect of sodium hexametaphosphate (SHMP) on powder dispersion behavior was systematically investigated using the combined techniques of liquid contact angle, turbidity, zeta potential (ZP), scanning electron microscopy [...] Read more.
A lanthanum–cerium-based abrasive composed of CeO2, LaOF, and LaF3 was commercially obtained. The effect of sodium hexametaphosphate (SHMP) on powder dispersion behavior was systematically investigated using the combined techniques of liquid contact angle, turbidity, zeta potential (ZP), scanning electron microscopy (SEM), powder X-ray diffraction (XRD) combined with Rietveld refinements, X-ray photoelectron spectroscopy (XPS), and polishing tests. The results indicated that the addition of 0.5 wt.% SHMP dispersant to the 5 wt.% lanthanum–cerium-based slurry produced the most stable suspension with a high turbidity of 2715 NTU and a low wetting angle of 45°. The as-obtained slurry displayed good surface polishing quality for K9 glass, with low surface roughness (Ra) of 0.642 and 0.515 nm (in the range of 979 × 979 μm2) at pH = 6 and 11, respectively, which corresponds to the fact that it has local maximum absolute values of ZP at these two pH values. SEM images demonstrated that after appropriate grafting of SHMP, the particle aggregation was reduced and the slurry’s dispersion stability was improved. In addition, the dispersion mechanism was explained based on the principle of complexation reaction, which reveals that the dispersant SHMP can increase the interparticle steric hindrance and electrostatic repulsions. In an acidic environment, steric hindrance dominates, while electrostatic repulsion prevails under alkaline conditions. As expected, this polishing slurry may find potential applications in manufacturing optical devices and integrated circuits. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

35 pages, 4084 KB  
Article
Electrostatically Interacting Wannier Qubits in Curved Space
by Krzysztof Pomorski
Materials 2024, 17(19), 4846; https://doi.org/10.3390/ma17194846 - 30 Sep 2024
Cited by 5 | Viewed by 1921
Abstract
A derivation of a tight-binding model from Schrödinger formalism for various topologies of position-based semiconductor qubits is presented in the case of static and time-dependent electric fields. The simplistic tight-binding model enables the description of single-electron devices at a large integration scale. The [...] Read more.
A derivation of a tight-binding model from Schrödinger formalism for various topologies of position-based semiconductor qubits is presented in the case of static and time-dependent electric fields. The simplistic tight-binding model enables the description of single-electron devices at a large integration scale. The case of two electrostatically Wannier qubits (also known as position-based qubits) in a Schrödinger model is presented with omission of spin degrees of freedom. The concept of programmable quantum matter can be implemented in the chain of coupled semiconductor quantum dots. Highly integrated and developed cryogenic CMOS nanostructures can be mapped to coupled quantum dots, the connectivity of which can be controlled by a voltage applied across the transistor gates as well as using an external magnetic field. Using the anti-correlation principle arising from the Coulomb repulsion interaction between electrons, one can implement classical and quantum inverters (Classical/Quantum Swap Gate) and many other logical gates. The anti-correlation will be weakened due to the fact that the quantumness of the physical process brings about the coexistence of correlation and anti-correlation at the same time. One of the central results presented in this work relies on the appearance of dissipation-like processes and effective potential renormalization building effective barriers in both semiconductors and in superconductors between not bended nanowire regions both in classical and in quantum regimes. The presence of non-straight wire regions is also expressed by the geometrical dissipative quantum Aharonov–Bohm effect in superconductors/semiconductors when one obtains a complex value vector potential-like field. The existence of a Coulomb interaction provides a base for the physical description of an electrostatic Q-Swap gate with any topology using open-loop nanowires, with programmable functionality. We observe strong localization of the wavepacket due to nanowire bending. Therefore, it is not always necessary to build a barrier between two nanowires to obtain two quantum dot systems. On the other hand, the results can be mapped to the problem of an electron in curved space, so they can be expressed with a programmable position-dependent metric embedded in Schrödinger’s equation. The semiconductor quantum dot system is capable of mimicking curved space, providing a bridge between fundamental and applied science in the implementation of single-electron devices. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

Back to TopTop