Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = two-chord columns

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11687 KB  
Article
Investigation of a Modified Wells Turbine for Wave Energy Extraction
by Mohammad Nasim Uddin, Frimpong Opoku and Michael Atkinson
Energies 2024, 17(15), 3638; https://doi.org/10.3390/en17153638 - 24 Jul 2024
Cited by 2 | Viewed by 2306
Abstract
The Oscillating Water Column (OWC) is the most promising self-rectifying device for power generation from ocean waves; over the past decade, its importance has been rekindled. The bidirectional airflow inside the OWC drives the Wells turbine connected to a generator to harness energy. [...] Read more.
The Oscillating Water Column (OWC) is the most promising self-rectifying device for power generation from ocean waves; over the past decade, its importance has been rekindled. The bidirectional airflow inside the OWC drives the Wells turbine connected to a generator to harness energy. This study evaluated the aerodynamic performance of two hybrid airfoil (NACA0015 and NACA0025) blade designs with variable chord distribution along the span of a Wells turbine. The present work examines the aerodynamic impact of the variable chord turbine and compares it with one with a constant chord. Ideally, Wells rotor blades with variable chords perform better since they have an even axial velocity distribution on their leading edge. The variable chord rotor blade configurations differ from hub to tip with taper ratios (Chord at Tip/Chord at Hub) of 1.58 and 0.63. The computation is performed in ANSYS™ CFX 2023 R2 by solving three-dimensional, steady-state, incompressible Reynolds Averaged Navier–Stokes (RANS) equations coupled with a k-ω Shear Stress Transport (SST) turbulence model in a non-inertial reference frame rotating with the turbine. The accuracy of the numerical results was achieved by performing a grid independence study. A refined mesh showed good agreement with the available experimental and numerical data in terms of efficiency, torque, and pressure drop at different flow coefficients. A variable chord Wells turbine with a taper ratio of 1.58 had a peak efficiency of 59.6%, as opposed to the one with a taper ratio of 0.63, which had a peak efficiency of 58.2%; the constant chord Wells turbine only had a peak efficiency of 58.5%. Furthermore, the variable chord rotor with the higher taper ratio had a larger operating range than others. There are significant improvements in the aerodynamic performance of the modified Wells turbine, compared to the conventional Wells turbine, which makes it suitable for wave energy harvesting. The flow field investigation around the turbine blades was conducted and analyzed. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

24 pages, 6276 KB  
Article
Behavior of Two-Chord Steel–Concrete Composite Columns under Axial Compression
by Josip Kovač-Striko, Aleksandar Landović, Arpad Čeh and Miroslav Bešević
Appl. Sci. 2023, 13(23), 12634; https://doi.org/10.3390/app132312634 - 23 Nov 2023
Cited by 2 | Viewed by 2315
Abstract
Experimental and numerical research on axially compressed columns made from built-up two-chord concrete-filled steel tubes (TCCFSTs) is presented in this study. The columns were constructed from two parallel circular high-strength steel tubes connected by five batten tubes. The chord tubes were filled with [...] Read more.
Experimental and numerical research on axially compressed columns made from built-up two-chord concrete-filled steel tubes (TCCFSTs) is presented in this study. The columns were constructed from two parallel circular high-strength steel tubes connected by five batten tubes. The chord tubes were filled with high-strength concrete. The yield stress of the steel used was 600 MPa, while the cylinder compressive strength of the concrete was 95 MPa. Hollow specimens were also tested to serve as a control group. An experimental analysis investigated the influence of the compressive strength of the concrete fill on the load-bearing capacity of the column and the influence of the concrete fill on the slenderness of the column. The behavior under load, stress and strain development, and the failure modes of the specimens were also analyzed. The results of the tests showed that all parts of the built-up column participated in the load-bearing process. The load-bearing capacity of the hollow two-chord columns was improved by around 1.74 times, and the slenderness increased by 16% with the concrete infill. The columns filled with concrete exhibited almost linear behavior with a higher ultimate strength and stiffness than the hollow built-up steel columns. Furthermore, the application of three calculation codes to forecast the capacity of the TCCFST columns was evaluated. Additionally, finite element method (FEM) modeling was used to investigate the stresses, strains, deformations, and ultimate capacity of the TCCFST column models loaded with axial compressive force. The FEM model showed good predictions of strength, stresses, deformations, and buckling. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

24 pages, 23602 KB  
Article
Performance of Novel U-Connector in CFS Truss-to-Column Bolted Connection under Axial Force
by Lazar Lukačević, Paulina Krolo, Antonio Bakran and Ivan Palijan
Buildings 2023, 13(7), 1623; https://doi.org/10.3390/buildings13071623 - 26 Jun 2023
Cited by 2 | Viewed by 7423
Abstract
This paper presents an experimental and numerical investigation of the tensile and compressive behaviour of a novel U-connector in the cold-formed steel (CFS) truss-to-column connection. Tensile tests were performed on 12 specimens representing the tension chords of the trusses in the connection. The [...] Read more.
This paper presents an experimental and numerical investigation of the tensile and compressive behaviour of a novel U-connector in the cold-formed steel (CFS) truss-to-column connection. Tensile tests were performed on 12 specimens representing the tension chords of the trusses in the connection. The results were used to validate a finite element model. The validated model was then subjected to both compressive and tensile loads, which revealed low stiffness in both the compressive and tensile components of the proposed connection. An optimisation of the geometry by using one long nut instead of two nuts was carried out to improve the behaviour and stiffness of the connection. The optimised results were compared with both experimental and numerical data, and conclusions were drawn regarding the effectiveness of the components in the proposed connection. The use of long-nut optimisation in the tension and compression components of the proposed connection shows a significant increase in load-bearing capacity, which makes it very promising for future applications in CFS truss-to-column connections. However, further validation through experimental testing is required to confirm the effectiveness and reliability of the connection in full-scale structures. Full article
(This article belongs to the Special Issue Cold-Formed Steel Structures: Behaviour, Strength and Design)
Show Figures

Figure 1

22 pages, 7760 KB  
Article
Determination of Buckling Behavior of Web-Stiffened Cold-Formed Steel Built-Up Column under Axial Compression
by Muthuraman Mohan, Anuradha Ramachandran, Mugahed Amran and Aleksey Borovkov
Materials 2022, 15(9), 2968; https://doi.org/10.3390/ma15092968 - 19 Apr 2022
Cited by 7 | Viewed by 2823
Abstract
The practice of utilizing cold-drawn steel for structural and non-structural elements has expanded nowadays due to it being lighter in weight, economic section, desirable in fabrication, and its preferred post-buckling behavior over hot rolled sections. The cold-drawn steel section back to the back-lipped [...] Read more.
The practice of utilizing cold-drawn steel for structural and non-structural elements has expanded nowadays due to it being lighter in weight, economic section, desirable in fabrication, and its preferred post-buckling behavior over hot rolled sections. The cold-drawn steel section back to the back-lipped channel section has a wide application as a structural member. The fasteners are provided at regular intervals for the long-span structure to prevent individual failures. This study is concerned with the inadequacy of research addressing the behavior of built-up columns. The relevant built-up column section is chosen based on the AISI-S100:2007 specification. Thirty-six specimens were designed and tested by varying web, flange, lip dimensions, spacing between the chords, and battened width experimentally subjected to an axial compression. Comparing 36 experimentally buckled specimens with the model generated by Finite Element Method accompanied with ASI-recommended two direct strength methods (DSMs). The DSM comprises the step-by-step procedure incorporated with the elastic, critical, and global distortional interaction. Based on the performed reliability analysis, such as the experimental, analytical, and theoretical studies, the failure load, buckling mode, the economic section, and design rules were proposed. Four suitable sections were selected from the proposal, and the validation study was carried out. From the validation study, experimental values were found to be 1.072 times the FEM values, and DSM values were found to be 0.97 times the FEM values. Based on the significant findings of this study, the proposed design recommendation and the corrected value for DSM are suitable for designing back-to-back stiffened columns. Full article
Show Figures

Figure 1

14 pages, 3649 KB  
Article
Effects of the Microbubble Generation Mode on Hydrodynamic Parameters in Gas–Liquid Bubble Columns
by Shanglei Ning, Haibo Jin, Guangxiang He, Lei Ma, Xiaoyan Guo and Rongyue Zhang
Processes 2020, 8(6), 663; https://doi.org/10.3390/pr8060663 - 3 Jun 2020
Cited by 10 | Viewed by 3880
Abstract
The hydrodynamics parameters of microbubbles in a bubble column were studied in an air–water system with a range of superficial gas velocity from 0.013 to 0.100 m/s using a differential pressure transmitter, double probe optical fiber probe, and electrical resistance tomography (ERT) technique. [...] Read more.
The hydrodynamics parameters of microbubbles in a bubble column were studied in an air–water system with a range of superficial gas velocity from 0.013 to 0.100 m/s using a differential pressure transmitter, double probe optical fiber probe, and electrical resistance tomography (ERT) technique. Two kinds of microbubble generators (foam gun, sintered plate) were used to generate microbubbles in the bubble column with a diameter of 90 mm, and to compare the effects of different foaming methods on the hydrodynamics parameters in the bubble column. The hydrodynamic behavior of the homogeneous regime and the transition regime was also studied. The results show that, by changing the microbubble-generating device, the hydrodynamic parameters in the column are changed, and both microbubble-generating devices can obtain a higher gas holdup and a narrower chord length distribution. When the foam gun is used as the gas distributor, a higher gas holdup and a narrower average bubble chord length can be obtained than when the sintered plate is used as the gas distributor. In addition, under different operating conditions, the relative frequency distribution of the chord length at different radial positions is mainly concentrated in the interval of 0–5 mm, and it is the highest in the center of the column. Full article
(This article belongs to the Special Issue Fluid Dynamics, Multi Phase Flow, and Thermal Recovery Methods)
Show Figures

Figure 1

28 pages, 47435 KB  
Article
Evaluation of Progressive Collapse Resistance of Steel Moment Frames Designed with Different Connection Details Using Energy-Based Approximate Analysis
by Sang-Yun Lee, Sam-Young Noh and Dongkeun Lee
Sustainability 2018, 10(10), 3797; https://doi.org/10.3390/su10103797 - 20 Oct 2018
Cited by 9 | Viewed by 7161
Abstract
This study evaluates the progressive collapse resistance performance of steel moment frames, individually designed with different connection details. Welded unreinforced flange-bolted web (WUF-B) and reduced beam section (RBS) connections are selected and applied to ordinary moment frames designed as per the Korean Building [...] Read more.
This study evaluates the progressive collapse resistance performance of steel moment frames, individually designed with different connection details. Welded unreinforced flange-bolted web (WUF-B) and reduced beam section (RBS) connections are selected and applied to ordinary moment frames designed as per the Korean Building Code (KBC) 2016. The 3-D steel frame systems are modeled using reduced models of 1-D and 2-D elements for beams, columns, connections, and composite slabs. Comparisons between the analyzed results of the reduced models and the experimental results are presented to verify the applicability of the models. Nonlinear static analyses of two prototype buildings with different connection details are conducted using the reduced models, and an energy-based approximate analysis is used to account for the dynamic effects associated with sudden column loss. The assessment on the structures was based on structural robustness and sensitivity methods using the alternative path method suggested in General Services Administration (GSA) 2003, in which column removal scenarios were performed and the bearing capacity of the initial structure with an undamaged column was calculated under gravity loads. According to the analytical results, the two prototype buildings satisfied the chord rotation criterion of GSA 2003. These results were expected since the composite slabs designed to withstand more than 3.3 times the required capacity had a significant effect on the stiffness of the entire structure. The RBS connections were found to be 14% less sensitive to progressive collapse compared to the WUF-B ones. Full article
Show Figures

Figure 1

Back to TopTop