Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = tumor derived exosomes hematological malignancies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 3469 KB  
Review
Navigating the Landscape of Exosomal microRNAs: Charting Their Pivotal Role as Biomarkers in Hematological Malignancies
by Manlio Fazio, Fabio Stagno, Giuseppa Penna, Giuseppe Mirabile and Alessandro Allegra
Non-Coding RNA 2025, 11(5), 64; https://doi.org/10.3390/ncrna11050064 - 31 Aug 2025
Viewed by 2330
Abstract
Under physiological and pathological conditions, all cells release extracellular vesicles named exosomes, which act as transporters of lipidic, protein, and genetic material from parent to recipient cells. Neoplastic cells can secrete higher number of exosomes to exert pro-tumoral effects such as microenvironmental changes, [...] Read more.
Under physiological and pathological conditions, all cells release extracellular vesicles named exosomes, which act as transporters of lipidic, protein, and genetic material from parent to recipient cells. Neoplastic cells can secrete higher number of exosomes to exert pro-tumoral effects such as microenvironmental changes, disease progression, immunosuppression and drug-resistance. This holds true for both organ-specific cancers and hematologic malignancies. One of the most important components of exosomal cargo are microRNAs which can mediate all the abovementioned effects. More specifically, microRNAs are small non-coding RNAs, routinely detected through quantitative real-time PCR, which act as translational suppressors by regulating protein-coding genes. Considering their high stability in all body fluids and viability in circulation, research is currently focusing on this type of RNAs for the so called “liquid biopsy”, a non-invasive tool for disease diagnosis and longitudinal monitoring. However, several issues remain to be solved including the lack of standardized protocols for exosome isolation and miRNA detection. Starting with this premise, our review aims to provide a wide description of the known microRNA panels employed in the prominent hematological malignancies, which will hopefully redefine the approach to these very challenging diseases in the near future. Full article
Show Figures

Figure 1

23 pages, 8237 KB  
Review
CAR Cell-Derived Exosomes in Cancer Therapy: Biogenesis, Engineering Strategies and Antitumor Mechanisms
by Chaohua Si, Yuanyuan Li, Yunwen Wang, Jianen Gao and Xu Ma
Int. J. Mol. Sci. 2025, 26(16), 7890; https://doi.org/10.3390/ijms26167890 - 15 Aug 2025
Cited by 1 | Viewed by 2732
Abstract
Chimeric antigen receptor (CAR) cell therapy, encompassing CAR T, CAR NK, and CAR macrophage cells, demonstrates high efficacy in tumor treatment, conferring durable and effective responses, notably in hematologic malignancies. However, challenges persist in the manufacture of CAR cells, and treatment is associated [...] Read more.
Chimeric antigen receptor (CAR) cell therapy, encompassing CAR T, CAR NK, and CAR macrophage cells, demonstrates high efficacy in tumor treatment, conferring durable and effective responses, notably in hematologic malignancies. However, challenges persist in the manufacture of CAR cells, and treatment is associated with serious adverse events, notably cytokine release syndrome (CRS), a potentially life-threatening complication. Owing to the inherent properties of exosomes, CAR cell-derived exosomes offer distinct advantages in cancer therapeutics. CAR cells-derived exosomes retain the inherent tumor-killing function of the parent cells while also exhibiting key practical advantages, including wide availability, safety, and ease of storage and transport. Furthermore, CAR cell-derived exosomes can be combined with other tumor therapies; this combinatorial approach significantly enhances efficacy while reducing side effects. To accelerate the clinical translation of CAR cell-derived exosomes in tumor therapy, this paper reviews their biogenesis, engineering strategies, antitumor mechanisms and clinical evidence, including case studies of combination therapies with other antitumor modalities. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

20 pages, 3789 KB  
Review
Modern Advances in CARs Therapy and Creating a New Approach to Future Treatment
by Karol Sadowski, Wioletta Olejarz and Grzegorz Basak
Int. J. Mol. Sci. 2022, 23(23), 15006; https://doi.org/10.3390/ijms232315006 - 30 Nov 2022
Cited by 14 | Viewed by 4419
Abstract
Genetically engineered T and NK cells expressing a chimeric antigen receptor (CAR) are promising cytotoxic cells for the treatment of hematological malignancies and solid tumors. Despite the successful therapies using CAR-T cells, they have some disadvantages, such as cytokine release syndrome (CRS), neurotoxicity, [...] Read more.
Genetically engineered T and NK cells expressing a chimeric antigen receptor (CAR) are promising cytotoxic cells for the treatment of hematological malignancies and solid tumors. Despite the successful therapies using CAR-T cells, they have some disadvantages, such as cytokine release syndrome (CRS), neurotoxicity, or graft-versus-host-disease (GVHD). CAR-NK cells have lack or minimal cytokine release syndrome and neurotoxicity, but also multiple mechanisms of cytotoxic activity. NK cells are suitable for developing an “off the shelf” therapeutic product that causes little or no graft versus host disease (GvHD), but they are more sensitive to apoptosis and have low levels of gene expression compared to CAR-T cells. To avoid these adverse effects, further developments need to be considered to enhance the effectiveness of adoptive cellular immunotherapy. A promising approach to enhance the effectiveness of adoptive cellular immunotherapy is overcoming terminal differentiation or senescence and exhaustion of T cells. In this case, EVs derived from immune cells in combination therapy with drugs may be considered in the treatment of cancer patients, especially effector T and NK cells-derived exosomes with the cytotoxic activity of their original cells. Full article
(This article belongs to the Special Issue Cancer Immunotherapy: Recent Progress)
Show Figures

Figure 1

19 pages, 3279 KB  
Review
Recent Progress of Exosomes in Multiple Myeloma: Pathogenesis, Diagnosis, Prognosis and Therapeutic Strategies
by Xi Wang, Lin He, Xiaobing Huang, Shasha Zhang, Wanjun Cao, Feifei Che, Yizhun Zhu and Jingying Dai
Cancers 2021, 13(7), 1635; https://doi.org/10.3390/cancers13071635 - 1 Apr 2021
Cited by 24 | Viewed by 3905
Abstract
Multiple myeloma (MM) is a hematological malignancy that is still incurable. The bone marrow microenvironment (BMM), with cellular and non-cellular components, can create a favorable environment for the survival, proliferation and migration of MM cells, which is the main reason for the failure [...] Read more.
Multiple myeloma (MM) is a hematological malignancy that is still incurable. The bone marrow microenvironment (BMM), with cellular and non-cellular components, can create a favorable environment for the survival, proliferation and migration of MM cells, which is the main reason for the failure of MM therapies. Many studies have demonstrated that exosomes play an important role in the tumor-supportive BMM. Exosomes are nanoscale vesicles that can be released by various cells. Some exosomes contribute to the pathogenesis and progression of MM. MM-derived exosomes act on different cells in the BMM, thereby creating an environment conducive to the survival and growth of MM cells. Owing to the important roles of exosomes in the BMM, targeting the secretion of exosomes may become an effective therapeutic strategy for MM. In addition, the abnormal expression of “cargos” in the exosomes of MM patients may be used to diagnose MM or used as part of a screen for the early prognoses of MM patients. Exosomes also have good biological properties, including safety, biocompatibility, stability and biodegradability. Therefore, the encapsulation of anti-cancer drugs in exosomes, along with surface modifications of exosomes with targeting molecules, are very promising strategies for cancer therapies—particularly for MM. In addition, DC-derived exosomes (DC-EXs) can express MHC-I, MHC-II and T cell costimulatory molecules. Therefore, DC-EXs may be used as a nanocarrier to deliver cancer vaccines in MM. This review summarizes the recent progress of exosome research regarding the pathogenesis of, diagnosis of, prognosis of and therapeutic strategies for MM. Full article
Show Figures

Graphical abstract

18 pages, 1518 KB  
Review
Uncovering the Exosomes Diversity: A Window of Opportunity for Tumor Progression Monitoring
by Domenico Maisano, Selena Mimmi, Rossella Russo, Antonella Fioravanti, Giuseppe Fiume, Eleonora Vecchio, Nancy Nisticò, Ileana Quinto and Enrico Iaccino
Pharmaceuticals 2020, 13(8), 180; https://doi.org/10.3390/ph13080180 - 4 Aug 2020
Cited by 42 | Viewed by 6627
Abstract
Cells can communicate through special “messages in the bottle”, which are recorded in the bloodstream inside vesicles, namely exosomes. The exosomes are nanovesicles of 30–100 nm in diameter that carry functionally active biological material, such as proteins, messanger RNA (mRNAs), and micro RNA [...] Read more.
Cells can communicate through special “messages in the bottle”, which are recorded in the bloodstream inside vesicles, namely exosomes. The exosomes are nanovesicles of 30–100 nm in diameter that carry functionally active biological material, such as proteins, messanger RNA (mRNAs), and micro RNA (miRNAs). Therefore, they are able to transfer specific signals from a parental cell of origin to the surrounding cells in the microenvironment and to distant organs through the circulatory and lymphatic stream. More and more interest is rising for the pathological role of exosomes produced by cancer cells and for their potential use in tumor monitoring and patient follow up. In particular, the exosomes could be an appropriate index of proliferation and cancer cell communication for monitoring the minimal residual disease, which cannot be easily detectable by common diagnostic and monitoring techniques. The lack of unequivocal markers for tumor-derived exosomes calls for new strategies for exosomes profile characterization aimed at the adoption of exosomes as an official tumor biomarker for tumor progression monitoring. Full article
Show Figures

Graphical abstract

28 pages, 2033 KB  
Review
Hematological Malignancy-Derived Small Extracellular Vesicles and Tumor Microenvironment: The Art of Turning Foes into Friends
by Ernesto Gargiulo, Jerome Paggetti and Etienne Moussay
Cells 2019, 8(5), 511; https://doi.org/10.3390/cells8050511 - 27 May 2019
Cited by 32 | Viewed by 7995
Abstract
Small extracellular vesicles (small EVs) are commonly released by all cells, and are found in all body fluids. They are implicated in cell to cell short- and long-distance communication through the transfer of genetic material and proteins, as well as interactions between target [...] Read more.
Small extracellular vesicles (small EVs) are commonly released by all cells, and are found in all body fluids. They are implicated in cell to cell short- and long-distance communication through the transfer of genetic material and proteins, as well as interactions between target cell membrane receptors and ligands anchored on small EV membrane. Beyond their canonical functions in healthy tissues, small EVs are strategically used by tumors to communicate with the cellular microenvironment and to establish a proper niche which would ultimately allow cancer cell proliferation, escape from the immune surveillance, and metastasis formation. In this review, we highlight the effects of hematological malignancy-derived small EVs on immune and stromal cells in the tumor microenvironment. Full article
(This article belongs to the Special Issue Tumor Microenvironment: Interaction and Metabolism)
Show Figures

Graphical abstract

18 pages, 3085 KB  
Article
Lipid Nanoparticles Decorated with TNF-Related Aptosis-Inducing Ligand (TRAIL) Are More Cytotoxic than Soluble Recombinant TRAIL in Sarcoma
by Ana Gallego-Lleyda, Diego De Miguel, Alberto Anel and Luis Martinez-Lostao
Int. J. Mol. Sci. 2018, 19(5), 1449; https://doi.org/10.3390/ijms19051449 - 13 May 2018
Cited by 20 | Viewed by 5265
Abstract
Sarcomas are rare and heterogeneous cancers classically associated with a poor outcome. Sarcomas are 1% of the cancer but recent estimations indicate that sarcomas account for 2% of the estimated cancer-related deaths. Traditional treatment with surgery, radiotherapy, and chemotherapy has improved the outcome [...] Read more.
Sarcomas are rare and heterogeneous cancers classically associated with a poor outcome. Sarcomas are 1% of the cancer but recent estimations indicate that sarcomas account for 2% of the estimated cancer-related deaths. Traditional treatment with surgery, radiotherapy, and chemotherapy has improved the outcome for some types of sarcomas. However, novel therapeutic strategies to treat sarcomas are necessary. TNF-related apoptosis-inducing ligand (TRAIL) is a death ligand initially described as capable of inducing apoptosis on tumor cell while sparing normal cells. Only few clinical trials have used TRAIL-based treatments in sarcoma, but they show only low or moderate efficacy of TRAIL. Consequently, novel TRAIL formulations with an improved TRAIL bioactivity are necessary. Our group has developed a novel TRAIL formulation based on tethering this death ligand on a lipid nanoparticle surface (LUV-TRAIL) resembling the physiological secretion of TRAIL as a trasmembrane protein inserted into the membrane of exosomes. We have already demonstrated that LUV-TRAIL shows an improved cytotoxic activity when compared to soluble recombinant TRAIL both in hematological malignancies and epithelial-derived cancers. In the present study, we have tested LUV-TRAIL in several human sarcoma tumor cell lines with different sensitivity to soluble recombinant TRAIL, finding that LUV-TRAIL was more efficient than soluble recombinant TRAIL. Moreover, combined treatment of LUV-TRAIL with distinct drugs proved to be especially effective, sensitizing even more resistant cell lines to TRAIL. Full article
(This article belongs to the Special Issue Nanotechnology in Cancer Treatment)
Show Figures

Figure 1

Back to TopTop