Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = tumbled meat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4592 KiB  
Article
Combined Effects of Compound Low-Sodium Alternative Salts and Vacuum Tumbling on the Quality, Water Distribution, and Microstructure of Marinated Beef
by Yanfeng Huang, Shujie Yang, Longtao Zhang, Song Miao, Zhiyong Xu, Baodong Zheng and Kaibo Deng
Foods 2025, 14(4), 605; https://doi.org/10.3390/foods14040605 - 12 Feb 2025
Cited by 1 | Viewed by 1206
Abstract
This study proposes a compound low-sodium alternative salt (CLSAS) formulation (2.4% sodium chloride, 0.8% K lactate, 0.4% magnesium chloride, 0.4% Ca ascorbate, 0.2% L lysine, and 4% sorbitol) combined with vacuum tumbling for beef marination. The effects of 4% NaCl static marination (F), [...] Read more.
This study proposes a compound low-sodium alternative salt (CLSAS) formulation (2.4% sodium chloride, 0.8% K lactate, 0.4% magnesium chloride, 0.4% Ca ascorbate, 0.2% L lysine, and 4% sorbitol) combined with vacuum tumbling for beef marination. The effects of 4% NaCl static marination (F), CLSAS static marination (L), and CLSAS vacuum tumbling (VT-L) on the physicochemical properties, water distribution, and microstructure of marinated beef were evaluated. Compared with F, L maintained similar yield and color, reduced cooking loss, and improved texture while lowering sodium content. VT-L further enhanced product yield, water content, color, texture, and tenderness. Both CLSAS and vacuum tumbling reduced the relaxation time of immobilized water, promoted orderly formation of protein structure, and altered the microstructure of myogenic fibers. VT-L additionally improved the water-holding capacity of myofibrils and further reduced the relaxation times of immobilized and free water. Overall, VT-L could be an effective approach for enhancing the quality of low-sodium meat products, providing a feasible basis for the industrial application of CLSAS for low-sodium marinated meat products. Full article
Show Figures

Figure 1

10 pages, 4462 KiB  
Article
Effect of Tumbling Conditions on the Tendinous and Tenderness Index of Chicken Leg Meat
by Sylwia Mierzejewska, Jarosław Diakun, Mariusz Seńcio and Joanna Piepiórka-Stepuk
Sustainability 2023, 15(1), 273; https://doi.org/10.3390/su15010273 - 23 Dec 2022
Cited by 2 | Viewed by 2165
Abstract
This article presents the results of the effect of chicken leg meat tumbling parameters on its texture, as assessed by the tendinous-tenderness index KZ-S, where the value of KZ-S = 1 index means maximum tendinous—no tenderness and the value of [...] Read more.
This article presents the results of the effect of chicken leg meat tumbling parameters on its texture, as assessed by the tendinous-tenderness index KZ-S, where the value of KZ-S = 1 index means maximum tendinous—no tenderness and the value of KZ-S = 0 means no tendinous—maximum tenderness. The tumbling of the meat was performed in an agitator-tilt tumbler. The variable factors of the tumbling process were temperature (T), time (τ), rotational speed (ω) and angle of the tumbler drum inclination (α). The meat texture was tested using the universal testing machine TMS-Pro with a Warner–Bratzler knife. The results of the study were described using second-degree polynomial correlation functions with couplings and presented in the form of diagrams. The effect of the favorable reduction of the tendinous in favor of the tenderness of meat is most significantly influenced by the angle of the inclination of the drum of the tumbler and the time of massage. The optimal results for the tendinous-tenderness index KZ-S were obtained for the angle of the inclination of the drum of the tumbler α = 45° and tumbling duration τ = 50 min. For such tumbling parameters, the index KZ-S = 0.25 (reduced meat tendons). It is unfavorable, whereas massage tumbling at T = 0 °C, compared to higher and lower temperatures of massaging. The effect of the agitator speed ω depends on the time and temperature. The research results showed that the most favorable effects of the tendinous loss in favor of the tenderness, determined by the tendinous-tenderness index KZ-S, are obtained by the tumbling condition with high a high angle of inclination of the tank (α > 45°), a low value of the rotational speed (ω < 12 [1/min]), a longer time (τ > 50 min) and a temperature different from 0 °C. Full article
(This article belongs to the Special Issue Food Dehydration and Food Processing)
Show Figures

Figure 1

15 pages, 2011 KiB  
Article
Impact of Combining Tumbling and Sous-Vide Cooking Processes on the Tenderness, Cooking Losses and Colour of Bovine Meat
by Konan Charles Aimeric N’Gatta, Alain Kondjoyan, Raphael Favier, Jason Sicard, Jacques Rouel, Dominique Gruffat and Pierre-Sylvain Mirade
Processes 2022, 10(6), 1229; https://doi.org/10.3390/pr10061229 - 20 Jun 2022
Cited by 16 | Viewed by 3504
Abstract
This study investigated the effect of combining tumbling and sous-vide cooking processes on the tenderness, cooking losses and colour of bovine Semitendinosus (ST) muscles sampled from Charolais-breed cows. Half of the ST muscles were tumbled for 12 h with a compression rate of [...] Read more.
This study investigated the effect of combining tumbling and sous-vide cooking processes on the tenderness, cooking losses and colour of bovine Semitendinosus (ST) muscles sampled from Charolais-breed cows. Half of the ST muscles were tumbled for 12 h with a compression rate of 40%. All muscle samples, whether tumbled or not, were then sous-vide cooked at 50 °C, 60 °C or 80 °C for 1 h or 4 h. After cooking, we measured the shear forces (SF), cooking losses, total water content and the main colour characteristics of pre-tumbled and non-tumbled meat pieces. Pre-tumbled meat pieces had 20% lower SF values than non-tumbled meat pieces, regardless of the cooking conditions applied. All meat pieces cooked at 50 °C had significantly higher (p < 0.05) SF values and lower (p < 0.05) cooking losses than meat pieces cooked at 60 °C or 80 °C. Pre-tumbled meat pieces showed significantly lower cooking losses (p < 0.001) than non-tumbled meat pieces. Applying the tumbling process before cooking led to an increase in meat colour lightness values (p < 0.001), and the colour parameters were significantly affected (p < 0.05) by temperature, cooking time, and temperature × cooking time interaction. Combining a 12-h tumbling process with cooking at 60 °C appears to provide the best compromise between increasing meat tenderness and limiting cooking losses. Full article
Show Figures

Graphical abstract

8 pages, 539 KiB  
Article
The Pork Meat or the Environment of the Production Facility? The Effect of Individual Technological Steps on the Bacterial Contamination in Cooked Hams
by Helena Veselá, Kateřina Dorotíková, Marta Dušková, Petra Furmančíková, Ondrej Šedo and Josef Kameník
Microorganisms 2022, 10(6), 1106; https://doi.org/10.3390/microorganisms10061106 - 27 May 2022
Cited by 12 | Viewed by 2434
Abstract
The aim of this study was to analyse the influence of the contamination level of fresh meat on the bacterial population in raw material before cooking and on the microbiota of cooked hams following heat treatment. The effect of incubation temperatures of 6.5 [...] Read more.
The aim of this study was to analyse the influence of the contamination level of fresh meat on the bacterial population in raw material before cooking and on the microbiota of cooked hams following heat treatment. The effect of incubation temperatures of 6.5 and 15 °C on the results obtained was also evaluated during the bacteriological investigation. The total viable count (TVC), the number of Enterobacteriaceae and lactic acid bacteria (LAB) were determined in the samples. LAB were isolated from 13 samples out of the 50 fresh meat samples. The species most frequently detected included Latilactobacillus sakei, Leuconostoc carnosum, Enterococcus gilvus, Latilactobacillus curvatus, and Leuconostoc gelidum. The meat sampled after the brine injection and tumbler massaging showed higher bacterial counts compared to fresh meat samples (p < 0.001). The heat treatment destroyed the majority of the bacteria, as the bacterial counts were beneath the limit of detection with a few exceptions. Although the primary cultivation of samples of cooked hams did not reveal the presence of LAB, their presence was confirmed in 11 out of 12 samples by a stability test. Bacteria of the genus Leuconostoc were the most numerous. Full article
(This article belongs to the Special Issue Microorganisms in Food – Two Sides of One Story)
Show Figures

Figure 1

12 pages, 3625 KiB  
Article
Impact of Tumbling Process on the Toughness and Structure of Raw Beef Meat Pieces
by Konan Charles Aimeric N’Gatta, Alain Kondjoyan, Raphael Favier, Jacques Rouel, Annie Vénien, Thierry Astruc, Dominique Gruffat and Pierre-Sylvain Mirade
Foods 2021, 10(11), 2802; https://doi.org/10.3390/foods10112802 - 14 Nov 2021
Cited by 15 | Viewed by 3574
Abstract
Tenderness is a major factor in consumer perception and acceptability of beef meat. Here we used a laboratory tumbling simulator to investigate the effectiveness of the tumbling process in reducing the toughness of raw beef cuts. Twelve Semitendinosus beef muscles from cows were [...] Read more.
Tenderness is a major factor in consumer perception and acceptability of beef meat. Here we used a laboratory tumbling simulator to investigate the effectiveness of the tumbling process in reducing the toughness of raw beef cuts. Twelve Semitendinosus beef muscles from cows were tumbled according to four programs: T1 (2500 consecutive compression cycles (CC), for about 3 h), T2 (6000 CC, about 7.5 h), T3 (9500 CC, about 12 h), and T4 (13,000 CC, about 16 h). The effect of tumbling on the toughness of raw meat was assessed using compression tests (stresses measured at 20% and 80% of deformation ratios) and microscopic observations made at the periphery and centre of meat samples, and compared against non-tumbled controls. Longer tumbling times significantly reduced the stresses measured at 20% and 80% compression rates, which reflected the toughness of muscle fibres and connective tissue, respectively. At the microscopic level, longer tumbling times led to reduced extracellular spaces, increased degradation of muscle structure, and the emergence of amorphous zones. A 12-h tumbling protocol ultimately makes the best compromise between the process time demand and toughness reduction in beef Semitendinosus meat pieces. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

15 pages, 25079 KiB  
Article
Quantification of Process Lethality (5-Log Reduction) of Salmonella and Salt Concentration during Sodium Replacement in Biltong Marinade
by Caitlin Karolenko and Peter Muriana
Foods 2020, 9(11), 1570; https://doi.org/10.3390/foods9111570 - 29 Oct 2020
Cited by 8 | Viewed by 8635
Abstract
Salt (sodium chloride, NaCl) is commonly used in ready-to-eat (RTE) meat products such as biltong, a South African style dried beef product for flavor, enhanced moisture loss, and reduction of microbial growth. However, increased consumption of high sodium content foods is commonly associated [...] Read more.
Salt (sodium chloride, NaCl) is commonly used in ready-to-eat (RTE) meat products such as biltong, a South African style dried beef product for flavor, enhanced moisture loss, and reduction of microbial growth. However, increased consumption of high sodium content foods is commonly associated with high blood pressure and heart disease. This study evaluated the use of alternative salts, potassium chloride (KCl) and calcium chloride (CaCl2) in the biltong marinade to achieve a ≥ 5-log reduction of Salmonella, a pathogen of concern in beef products. Beef pieces (1.9 cm × 5.1 cm × 7.6 cm) were inoculated with a five-serovar mixture of Salmonella (Salmonella Thompson 120, Salmonella Enteritidis H3527, Salmonella Typhimurium H3380, Salmonella Heidelberg F5038BG1, and Salmonella Hadar MF60404), vacuum-tumbled in a traditional biltong marinade of salt, spices, and vinegar containing either NaCl, KCl or CaCl2 (2.2% concentration) followed by an 8–10 day drying period at 23.9 °C (75 °F) and 55% relative humidity. Microbial enumeration of Salmonella was conducted following inoculation, after marination, and after 2, 4, 6, 8, and 10 days of drying in a humidity/temperature chamber. Biltong produced with CaCl2, NaCl, or KCl achieved a > 5-log reduction of Salmonella after 6, 7, and 8 days, respectively. The Salmonella reduction trends with biltong made with NaCl or CaCl2 were not significantly different (p < 0.05) while both were significantly different from that made with KCl (p > 0.05). Sodium, calcium, and potassium ion concentrations were measured using ion-specific electrode meters following biltong processing and drying. As expected, the biltong made with the corresponding salt had the most abundant ion in the sample. Regardless of the salt used in the marinade, the potassium ion levels were moderately elevated in all samples. This was determined to be from potassium levels naturally present in beef rather than from other ingredients. Sampling of several commercial brands of biltong for sodium content showed that some were significantly above the allowable level of claims made on package ingredient statements. The substitution of NaCl with KCl or CaCl2 during biltong processing can also provide a 5-log reduction of Salmonella to produce a safe product that can be marketed as a more healthy low-sodium food alternative that may appeal to consumers who need to reduce their blood pressure and are conscientious of sodium levels in their diet. Full article
Show Figures

Figure 1

Back to TopTop