Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = true strain control mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 885 KB  
Article
Investigation of the Impact of Testing Machine and Control Modes on the Portevin-Le Chatelier Effect in Aluminum Alloy with Diffusible Solute Magnesium
by Roberto Doglione and Francesco Tanucci
J. Exp. Theor. Anal. 2025, 3(3), 25; https://doi.org/10.3390/jeta3030025 - 31 Aug 2025
Viewed by 132
Abstract
The Portevin-Le Chatelier (PLC) effect has been studied for many decades, yet the influence of testing modes has received limited attention. In the past 20 years, it has become increasingly recognized that the stiffness of the testing machine can significantly affect the occurrence [...] Read more.
The Portevin-Le Chatelier (PLC) effect has been studied for many decades, yet the influence of testing modes has received limited attention. In the past 20 years, it has become increasingly recognized that the stiffness of the testing machine can significantly affect the occurrence of jerky flow, particularly the serrations observed during tensile tests. This study addresses this issue by conducting tests on the Al-Mg alloy AA5083H111, which contains a substantial amount of diffusible magnesium in solid solution and exhibits dynamic strain aging, resulting in a pronounced PLC effect. Both electromechanical and servohydraulic testing machines were used in the tests; these machines differ in stiffness and control technology for applied strain rates. The study also explored different control modes, including stroke control for both machines and true strain control for the servohydraulic machine. The findings indicate that machine stiffness has a moderate effect on material behavior, and no single machine or testing mode can precisely control the strain rate in the sample during the PLC effect. However, it was noted that true strain rate control using a servohydraulic machine comes closest to accurately reflecting the material’s behavior during jerky flow. Full article
Show Figures

Figure 1

14 pages, 2108 KB  
Article
Strain-Mode Rockburst Dynamics in Granite: Mechanisms, Evolution Stages, and Acoustic Emission-Based Early Warning Strategies
by Chuanyu Hu, Zhiheng Mei, Zhenhang Xiao and Fuding Mei
Appl. Sci. 2025, 15(9), 4884; https://doi.org/10.3390/app15094884 - 28 Apr 2025
Viewed by 444
Abstract
Granite is widely used in laboratory rockburst simulations due to its exceptional strength, brittleness, and uniform composition. This study employs a true triaxial loading system to replicate asymmetric stress states near free surfaces, allowing precise control of three-dimensional stresses to simulate strain-mode rockbursts. [...] Read more.
Granite is widely used in laboratory rockburst simulations due to its exceptional strength, brittleness, and uniform composition. This study employs a true triaxial loading system to replicate asymmetric stress states near free surfaces, allowing precise control of three-dimensional stresses to simulate strain-mode rockbursts. Advanced monitoring tools, such as acoustic emission (AE) and high-speed imaging, were used to investigate the evolution process, failure mechanisms, and monitoring strategies. The evolution of strain-mode rockbursts is divided into five stages: stress accumulation, crack initiation, critical instability, rockburst occurrence, and residual stress adjustment. Each stage exhibits dynamic responses and progressive energy release. Failure is governed by a tension–shear coexistence mechanism, where vertical splitting and diagonal shear fractures near free surfaces lead to V-shaped craters and violent rock fragment ejection. This reflects the brittle nature of granite under high-stress conditions. The AE monitoring proved highly effective in identifying rockburst precursors, with key indicators including quiet periods of low AE activity and sudden surges in AE counts, coupled with ‘V-shaped’ b-value troughs, offering reliable early warning signals. These findings provide critical insights into strain-mode rockburst dynamics, highlighting the transition from elastic deformation to dynamic failure and the role of energy release mechanisms. Full article
Show Figures

Figure 1

12 pages, 5023 KB  
Article
Triaxial Compression Performance Research of Steel Slag Concrete on the Unified Strength Theory
by Zhiheng Deng, Jingkai Zhou, Beiquan Chen, Xiaoyan Wen and Bing Liu
Appl. Sci. 2021, 11(1), 128; https://doi.org/10.3390/app11010128 - 24 Dec 2020
Cited by 6 | Viewed by 2139
Abstract
To better explore the mechanical properties of steel slag concrete (SSC) under triaxial compression, true triaxial tests were performed on SSC with three replacement ratios (30%, 70%, 100%) by a servo-controlled setup (TAWZ-5000/3000). Through the test, failure modes, peak stress, and corresponding strain [...] Read more.
To better explore the mechanical properties of steel slag concrete (SSC) under triaxial compression, true triaxial tests were performed on SSC with three replacement ratios (30%, 70%, 100%) by a servo-controlled setup (TAWZ-5000/3000). Through the test, failure modes, peak stress, and corresponding strain of SSC are obtained. Results show that the failure modes of SSC are plate-splitting and slant-shear. Compared with the corresponding uniaxial strength, the triaxial compressive strength of SSC is significantly improved and is influenced by the stress ratio and the replacement ratio. Finally, based on unified strength theory, the strength failure criterion formula of SSC with different replacement rates under triaxial compression is given. Full article
(This article belongs to the Special Issue Mechanical Performance of New Concrete Materials)
Show Figures

Figure 1

12 pages, 6143 KB  
Article
Mechanical Performance of Steel Slag Concrete under Biaxial Compression
by Xiaoyan Wen, Jingkai Zhou, Beiquan Chen, Zhiheng Deng and Bing Liu
Materials 2020, 13(15), 3268; https://doi.org/10.3390/ma13153268 - 23 Jul 2020
Cited by 6 | Viewed by 2326
Abstract
The mechanical performance of steel slag concrete (SSC) under biaxial compression is investigated by a servo-controlled static-dynamic true triaxial machine (TAWZ-5000/3000). Three replacement ratios of steel slags and four kinds of stress ratio (0.25:1, 0.5:1, 0.75:1, and 1:1) are examined in this study. [...] Read more.
The mechanical performance of steel slag concrete (SSC) under biaxial compression is investigated by a servo-controlled static-dynamic true triaxial machine (TAWZ-5000/3000). Three replacement ratios of steel slags and four kinds of stress ratio (0.25:1, 0.5:1, 0.75:1, and 1:1) are examined in this study. According to the test results, the influences of replacement ratio and stress ratio on the strength, deformation properties, stress–strain curves, and failure mode of SSC are analyzed. The results show that the failure mode of SSC under biaxial compression is plate-splitting crack. Both the strength and deformation of SSC are larger than the corresponding values of the uniaxial compression. Under the same stress ratio, the value of principal stress σ 3 f increases first and then decreases with the increase in the replacement ratio. Under the same replacement ratio, σ 3 f increases first and then decreases as the stress ratio increases, and the maximum of σ 3 f is obtained at the stress ratio of α = 0.5:1. Based on the analysis and test data, the strength failure criterion of SSC under biaxial compression stresses is proposed. Full article
(This article belongs to the Special Issue Concrete and Construction Materials)
Show Figures

Figure 1

Back to TopTop