Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = trithiocyanuric acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2146 KiB  
Article
Green and Mild Fabrication of Magnetic Poly(trithiocyanuric acid) Polymers for Rapid and Selective Separation of Mercury(II) Ions in Aqueous Samples
by Qianqian Li, Boxian Ruan, Yue Yu, Linshu Ye, Aoxiong Dai, Sasha You, Bingshan Zhao and Limin Ren
Polymers 2024, 16(21), 3067; https://doi.org/10.3390/polym16213067 - 31 Oct 2024
Cited by 1 | Viewed by 1100
Abstract
The removal and detection of highly toxic mercury(II) ions (Hg2+) in water used daily is essential for human health and monitoring environmental pollution. Efficient porous organic polymers (POPs) can provide a strong adsorption capacity toward heavy metal ions, although the complex [...] Read more.
The removal and detection of highly toxic mercury(II) ions (Hg2+) in water used daily is essential for human health and monitoring environmental pollution. Efficient porous organic polymers (POPs) can provide a strong adsorption capacity toward heavy metal ions, although the complex synthetic process and inconvenient phase separation steps limit their application. Hence, a combination of POPs and magnetic nanomaterials was proposed and a new magnetic porous organic polymer adsorbent was fabricated by a green and mild redox reaction in the aqueous phase with trithiocyanuric acid (TA) and its sodium salts acting as reductive monomers and iodine acting as an oxidant. In the preparation steps, no additional harmful organic solvent is required and the byproducts of sodium iodine are generally considered to be non-toxic. The resulting magnetic poly(trithiocyanuric acid) polymers (MPTAPs) are highly porous, have large surface areas, are rich in sulfhydryl groups and show easy magnetic separation ability. The experimental results show that MPTAPs exhibit good adsorption affinity toward Hg2+ with high selectivity, rapid adsorption kinetics (10 min), a large adsorption capacity (211 mg g−1) and wide adsorption applicability under various pH environments (pH 2~8). Additionally, MPTAPs can be reused for up to 10 cycles, and the magnetic separation step of MPTAPs is fast and convenient, reducing energy consumption compared to centrifugation and filtration steps required for non-magnetic adsorbents. These results demonstrate the promising capability of MPTAPs as superior adsorbents for effective adsorption and separation of Hg2+. Based on this, the prepared MPTAPs were adopted as magnetic solid-phase extraction (MSPE) materials for isolation of trace Hg2+ from aqueous samples. Under optimized conditions, the extraction and quantification of trace Hg2+ in water samples were accomplished using inductively coupled plasma mass spectrometry (ICP-MS) detection after MSPE procedures. The proposed MPTAPs-based MSPE-ICP-MS method is efficient, rapid, sensitive and selective for the determination of trace Hg2+, and was successfully employed for the accurate analysis of trace Hg2+ in tap water, wastewater, lake water and river water samples. Full article
(This article belongs to the Special Issue Sustainable Polymers for a Circular Economy)
Show Figures

Graphical abstract

15 pages, 3977 KiB  
Article
Comparative Studies of g-C3N4 and C3N3S3 Organic Semiconductors—Synthesis, Properties, and Application in the Catalytic Oxygen Reduction
by Ewelina Wierzyńska, Marcin Pisarek, Tomasz Łęcki and Magdalena Skompska
Molecules 2023, 28(6), 2469; https://doi.org/10.3390/molecules28062469 - 8 Mar 2023
Cited by 14 | Viewed by 2816
Abstract
Exfoliated g-C3N4 is a well-known semiconductor utilized in heterogenous photocatalysis and water splitting. An improvement in light harvesting and separation of photogenerated charge carriers may be obtained by polymer doping with sulfur. In this work, we incorporate sulfur into the [...] Read more.
Exfoliated g-C3N4 is a well-known semiconductor utilized in heterogenous photocatalysis and water splitting. An improvement in light harvesting and separation of photogenerated charge carriers may be obtained by polymer doping with sulfur. In this work, we incorporate sulfur into the polymer chain by chemical polymerization of trithiocyanuric acid (C3N3S3H3) to obtain C3N3S3. The XRD measurements and TEM images indicated that C3N3S3, in contrast to g-C3N4, does not exist in the form of a graphitic structure and is not exfoliated into thin lamellas. However, both polymers have similar optical properties and positions of the conduction and valence bands. The comparative studies of electrochemical oxygen reduction and hydrogen evolution indicated that the overpotentials for the two processes were smaller for C3N3S3 than for g-C3N4. The RDE experiments in the oxygen-saturated solutions of 0.1 M NaOH have shown that O2 is electrochemically reduced via the serial pathway with two electrons involved in the first step. The spectroscopic experiments using NBT demonstrated that both polymers reveal high activity in the photocatalytic reduction of oxygen to superoxide anion radical by the photogenerated electrons. Full article
(This article belongs to the Special Issue Catalytic Nanomaterials: Energy and Environment)
Show Figures

Figure 1

15 pages, 12175 KiB  
Article
Design and Architecture of P-O Co-Doped Porous g-C3N4 by Supramolecular Self-Assembly for Enhanced Hydrogen Evolution
by Ximiao Zhu, Fan Yang, Jinhua Liu, Guangying Zhou, Dongdong Chen, Zhang Liu and Jianzhang Fang
Catalysts 2022, 12(12), 1583; https://doi.org/10.3390/catal12121583 - 5 Dec 2022
Cited by 7 | Viewed by 2147
Abstract
A novel phosphorus and oxygen co-doped graphitic carbon nitride (sheetP-O-CNSSA) photocatalyst was successfully synthesized and applied for H2 evolution under visible light. In the synthesis process of sheetP-O-CNSSA, the supramolecular complex was developed by the [...] Read more.
A novel phosphorus and oxygen co-doped graphitic carbon nitride (sheetP-O-CNSSA) photocatalyst was successfully synthesized and applied for H2 evolution under visible light. In the synthesis process of sheetP-O-CNSSA, the supramolecular complex was developed by the self-assembly and copolymerization reaction among melamine, cyanuric acid (CA) and trithiocyanuric acid (TCA) to act as g-C3N4 precursors, while (NH4)2HPO4 was applied as P and O precursors for element doping. The chemical structures, morphologies, and optical properties of the sheetP-O-CNSSA were characterized by a series of measurements, i.e., XRD, FT-IR, SEM, TEM, UV-vis DRS, and PL. The results suggested that the introduction of P and O elements could enhance the separation and migration efficiency of photogenerated electrons and holes in the energy band of g-C3N4. The photocatalytic tests over Erythrosin B (EB) sensitized sheetP-O-CNSSA indicated that the hydrogen evolution was greatly enhanced compared with other catalysts and non-sensitized sheetP-O-CNSSA under visible light irradiation. Finally, a possible dye-sensitized photocatalysis mechanism was also proposed on the basis of the as-obtained results. Full article
Show Figures

Figure 1

21 pages, 7171 KiB  
Article
Cu(C3H3N3S3)3 Adsorption onto ZnTiO3/TiO2 for Coordination-Complex Sensitized Photochemical Applications
by Ximena Jaramillo-Fierro, Karol Hernández and Silvia González
Materials 2022, 15(9), 3252; https://doi.org/10.3390/ma15093252 - 30 Apr 2022
Cited by 9 | Viewed by 2718
Abstract
Currently, the design of highly efficient materials for photochemical applications remains a challenge. In this study, an efficient semiconductor was prepared, based on a coordination complex (Cu-TTC) of Cu(I) and trithiocyanuric acid on ZnTiO3/TiO2 (ZTO/TO). The Cu-TTC/ZTO/TO composite was prepared [...] Read more.
Currently, the design of highly efficient materials for photochemical applications remains a challenge. In this study, an efficient semiconductor was prepared, based on a coordination complex (Cu-TTC) of Cu(I) and trithiocyanuric acid on ZnTiO3/TiO2 (ZTO/TO). The Cu-TTC/ZTO/TO composite was prepared by the solvothermal method at room temperature. The structural, optical, and electrochemical characteristics, as well as the photocatalytic performance of the composite, were experimentally and computationally studied. The results show that the Cu-TTC/ZTO/TO composite efficiently extended its photoresponse in the visible region of the electromagnetic spectrum. The electrochemistry of the proposed tautomeric architecture (s-Cu-TTC) clearly reveals the presence of metal–ligand charge-transfer (MLCT) and π → π* excitations. The maximum methylene blue (MB) dye photodegradation efficiency of 95% in aqueous solutions was achieved under the illumination of simulated solar light. Finally, computational calculations based on the Density Functional Theory (DFT) method were performed to determine the electronic properties of the s-Cu-TTC tautomeric structure and clarify the adsorption mechanism of this complex on the surface (101) of both ZnTiO3 and TiO2 oxides. The results obtained allow us to suggest that the Cu-TTC complex is an effective charge carrier and that the Cu-TTC/ZTO/TO composite can be used efficiently for photochemical applications. Full article
(This article belongs to the Special Issue Recent Progress in Advanced Adsorption Materials)
Show Figures

Figure 1

13 pages, 4004 KiB  
Article
Synthesis of N-Doped TiO2 for Efficient Photocatalytic Degradation of Atmospheric NOx
by Tamal Tahsin Khan, Gazi A. K. M. Rafiqul Bari, Hui-Ju Kang, Tae-Gyu Lee, Jae-Woo Park, Hyun Jin Hwang, Sayed Mukit Hossain, Jong Seok Mun, Norihiro Suzuki, Akira Fujishima, Jong-Ho Kim, Ho Kyong Shon and Young-Si Jun
Catalysts 2021, 11(1), 109; https://doi.org/10.3390/catal11010109 - 14 Jan 2021
Cited by 68 | Viewed by 6887
Abstract
Titanium oxide (TiO2) is a potential photocatalyst for removing toxic NOx from the atmosphere. Its practical application is, however, significantly limited by its low absorption into visible light and a high degree of charge recombination. The overall photocatalytic activity of [...] Read more.
Titanium oxide (TiO2) is a potential photocatalyst for removing toxic NOx from the atmosphere. Its practical application is, however, significantly limited by its low absorption into visible light and a high degree of charge recombination. The overall photocatalytic activity of TiO2 remains too low since it can utilize only about 4–5% of solar energy. Nitrogen doping into the TiO2 lattice takes advantage of utilizing a wide range of solar radiation by increasing the absorption capability towards the visible light region. In this work, N-doped TiO2, referred to as TC, was synthesized by a simple co-precipitation of tri-thiocyanuric acid (TCA) with P25 followed by heat treatment at 550 degrees C. The resulting nitrogen doping increased the visible-light absorption and enhanced the separation/transfer of photo-excited charge carriers by capturing holes by reduced titanium ions. As a result, TC samples exhibited excellent photocatalytic activities of 59% and 51% in NO oxidation under UV and visible light irradiation, in which the optimum mass ratio of TCA to P25 was found to be 10. Full article
(This article belongs to the Special Issue Commemorative Issue in Honor of Professor Akira Fujishima)
Show Figures

Graphical abstract

8 pages, 1426 KiB  
Communication
An Investigation on the Electrochemical Behavior and Antibacterial and Cytotoxic Activity of Nickel Trithiocyanurate Complexes
by Amir M. Ashrafi, Pavel Kopel and Lukas Richtera
Materials 2020, 13(7), 1782; https://doi.org/10.3390/ma13071782 - 10 Apr 2020
Cited by 5 | Viewed by 3067
Abstract
The electrochemical redox behavior of three trinuclear Ni(II) complexes [Ni3(abb)3(H2O)3(µ-ttc)](ClO4)3 (1), [Ni3(tebb)3(H2O)3(µ-ttc)](ClO4)3·H2O (2), and [...] Read more.
The electrochemical redox behavior of three trinuclear Ni(II) complexes [Ni3(abb)3(H2O)3(µ-ttc)](ClO4)3 (1), [Ni3(tebb)3(H2O)3(µ-ttc)](ClO4)3·H2O (2), and [Ni3(pmdien)3(µ-ttc)](ClO4)3 (3), where abb = 1-(1H-benzimidazol-2-yl)-N-(1H-benzimidazol-2-ylmethyl)methan-amine, ttcH3 = trithiocyanuric acid, tebb = 2-[2-[2-(1H-benzimidazol-2-yl)ethylsulfanyl]ethyl]-1H-benzimidazole, and pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine is reported. Cyclic voltammetry (CV) was applied for the study of the electrochemical behavior of these compounds. The results confirmed the presence of ttc and nickel in oxidation state +2 in the synthesized complexes. Moreover, the antibacterial properties and cytotoxic activity of complex 3 was investigated. All the complexes show antibacterial activity against Staphylococcus aureus and Escherichia coli to different extents. The cytotoxic activity of complex 3 and ttcNa3 were studied on G-361, HOS, K-562, and MCF7 cancer cell lines. It was found out that complex 3 possesses the cytotoxic activity against the tested cell lines, whereas ttcNa3 did not show any cytotoxic activity. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Applications of Metal Complexes)
Show Figures

Figure 1

17 pages, 3683 KiB  
Article
Sulfur-Doped Carbon Nitride Polymers for Photocatalytic Degradation of Organic Pollutant and Reduction of Cr(VI)
by Yun Zheng, Zihao Yu, Feng Lin, Fangsong Guo, Khalid A. Alamry, Layla A. Taib, Abdullah M. Asiri and Xinchen Wang
Molecules 2017, 22(4), 572; https://doi.org/10.3390/molecules22040572 - 1 Apr 2017
Cited by 83 | Viewed by 10733
Abstract
As a promising conjugated polymer, binary carbon nitride has attracted extensive attention as a metal-free and visible-light-responsive photocatalyst in the area of photon-involving purification of water and air. Herein, we report sulfur-doped polymeric carbon nitride microrods that are synthesized through thermal polymerization based [...] Read more.
As a promising conjugated polymer, binary carbon nitride has attracted extensive attention as a metal-free and visible-light-responsive photocatalyst in the area of photon-involving purification of water and air. Herein, we report sulfur-doped polymeric carbon nitride microrods that are synthesized through thermal polymerization based on trithiocyanuric acid and melamine (TM) supramolecular aggregates. By tuning the polymerization temperature, a series of sulfur-doped carbon nitride microrods are prepared. The degradation of Rhodamine B (RhB) and the reduction of hexavalent chromium Cr(VI) are selected as probe reactions to evaluate the photocatalytic activities. Results show that increasing pyrolysis temperature leads to a large specific surface area, strong visible-light absorption, and accelerated electron-hole separation. Compared to bulk carbon nitride, the highly porous sulfur-doped carbon nitride microrods fabricated at 650 °C exhibit remarkably higher photocatalytic activity for degradation of RhB and reduction of Cr(VI). This work highlights the importance of self-assembly approach and temperature-control strategy in the synthesis of photoactive materials for environmental remediation. Full article
(This article belongs to the Special Issue Photon-involving Purification of Water and Air)
Show Figures

Figure 1

17 pages, 1287 KiB  
Article
Biological Activity and Molecular Structures of Bis(benzimidazole) and Trithiocyanurate Complexes
by Pavel Kopel, Dorota Wawrzak, Vratislav Langer, Kristyna Cihalova, Dagmar Chudobova, Radek Vesely, Vojtech Adam and Rene Kizek
Molecules 2015, 20(6), 10360-10376; https://doi.org/10.3390/molecules200610360 - 4 Jun 2015
Cited by 45 | Viewed by 9359
Abstract
1-(1H-Benzimidazol-2-yl)-N-(1H-benzimidazol-2-ylmethyl)methanamine (abb) and 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl)-1H-benzimidazole (tbb) have been prepared and characterized by elemental analysis. These bis(benzimidazoles) have been further used in combination with trithiocyanuric acid for the preparation of complexes. [...] Read more.
1-(1H-Benzimidazol-2-yl)-N-(1H-benzimidazol-2-ylmethyl)methanamine (abb) and 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl)-1H-benzimidazole (tbb) have been prepared and characterized by elemental analysis. These bis(benzimidazoles) have been further used in combination with trithiocyanuric acid for the preparation of complexes. The crystal and molecular structures of two of them have been solved. Each nickel atom in the structure of trinuclear complex [Ni3(abb)3(H2O)3(μ-ttc)](ClO4)3·3H2O·EtOH (1), where ttcH3 = trithiocyanuric acid, is coordinated with three N atoms of abb, the N,S donor set of ttc anion and an oxygen of a water molecule. The crystal of [(tbbH2)(ttcH2)2(ttcH3)(H2O)] (2) is composed of a protonated bis(benzimidazole), two ttcH2 anions, ttcH3 and water. The structure is stabilized by a network of hydrogen bonds. These compounds were primarily synthesized for their potential antimicrobial activity and hence their possible use in the treatment of infections caused by bacteria or yeasts (fungi). The antimicrobial and antifungal activity of the prepared compounds have been evaluated on a wide spectrum of bacterial and yeast strains and clinical specimens isolated from patients with infectious wounds and the best antimicrobial properties were observed in strains after the use of ligand abb and complex 1, when at least 80% growth inhibition was achieved. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

15 pages, 2756 KiB  
Article
A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode
by Jana Vlachova, Katerina Tmejova, Pavel Kopel, Maria Korabik, Jan Zitka, David Hynek, Jindrich Kynicky, Vojtech Adam and Rene Kizek
Sensors 2015, 15(2), 2438-2452; https://doi.org/10.3390/s150202438 - 22 Jan 2015
Cited by 19 | Viewed by 8010
Abstract
Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur [...] Read more.
Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE. Full article
Show Figures

17 pages, 2124 KiB  
Article
Trithiocyanurate Complexes of Iron, Manganese and Nickel and Their Anticholinesterase Activity
by Pavel Kopel, Karel Dolezal, Vratislav Langer, Daniel Jun, Vojtech Adam, Kamil Kuca and Rene Kizek
Molecules 2014, 19(4), 4338-4354; https://doi.org/10.3390/molecules19044338 - 8 Apr 2014
Cited by 14 | Viewed by 8329
Abstract
The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of [...] Read more.
The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1)](ttcH2)(ClO4)·EtOH·H2O (1), where L1 is Schiff base derived from tris(2-aminoethyl)amine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1-) anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied. Full article
Show Figures

Graphical abstract

Back to TopTop