Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = translocon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2176 KiB  
Review
Extracellular Vesicles as Precision Delivery Systems for Biopharmaceuticals: Innovations, Challenges, and Therapeutic Potential
by Sidhesh Mohak and Zsolt Fabian
Pharmaceutics 2025, 17(5), 641; https://doi.org/10.3390/pharmaceutics17050641 - 12 May 2025
Cited by 1 | Viewed by 906
Abstract
Unlike traditional small-molecule agents, biopharmaceuticals, like synthetic RNAs, enzymes, and monoclonal antibodies, are highly vulnerable to environmental conditions. Preservation of their functional integrity necessitates advanced delivery methods. Being biocompatible, extracellular vesicles (EVs) gained attention as a promising system for delivering biopharmaceuticals, addressing challenges [...] Read more.
Unlike traditional small-molecule agents, biopharmaceuticals, like synthetic RNAs, enzymes, and monoclonal antibodies, are highly vulnerable to environmental conditions. Preservation of their functional integrity necessitates advanced delivery methods. Being biocompatible, extracellular vesicles (EVs) gained attention as a promising system for delivering biopharmaceuticals, addressing challenges related to the stability and efficacy of sensitive therapeutic molecules. Indeed, EVs can cross biological barriers like the blood–brain barrier, delivering therapeutic cargo to tissues that are traditionally difficult to reach. Recent innovations in surface modification technologies, including ligand and antibody attachment, have further enhanced EVs’ targeting capabilities, making them particularly effective in personalized medicine. Here, we review the versatile suitability of EVs for being next-generation delivery vehicles of biopharmaceuticals, including current standings, practical challenges, and possible future directions of the technology. Full article
(This article belongs to the Special Issue Cell-Mediated Delivery Systems)
Show Figures

Figure 1

16 pages, 4283 KiB  
Communication
Structural Modifications Reveal Dual Functions of the C-4 Carbonyl Group in the Fatty Acid Chain of Ipomoeassin F
by Arman Khosravi, Precious Nnamdi, Alexa May, Kelsey Slattery, Robert E. Sammelson and Wei Q. Shi
Molecules 2025, 30(2), 400; https://doi.org/10.3390/molecules30020400 - 18 Jan 2025
Viewed by 1088
Abstract
Ipomoeassin F (Ipom-F) is a plant-derived macrocyclic resin glycoside that potently inhibits cancer cell growth through blockage of Sec61-mediated protein translocation at the endoplasmic reticulum. Recently, detailed structural information on how Ipom-F binds to Sec61α was obtained using Cryo-EM, which discovered that polar [...] Read more.
Ipomoeassin F (Ipom-F) is a plant-derived macrocyclic resin glycoside that potently inhibits cancer cell growth through blockage of Sec61-mediated protein translocation at the endoplasmic reticulum. Recently, detailed structural information on how Ipom-F binds to Sec61α was obtained using Cryo-EM, which discovered that polar interactions between asparagine-300 (N300) in Sec61α and four oxygens in Ipom-F are crucial. One of the four oxygens is from the carbonyl group at C-4 of the fatty acid chain. In contrast, our previous structure–activity relationship (SAR) studies suggest that the carbonyl group is not essential. To resolve this discrepancy, we designed and synthesized two new open-chain analogues (10 and 11); 10 without the C-4 carbonyl had a dramatic activity loss, whereas 11 with an amide functional group was even more potent than Ipom-F. These new SAR data, in conjunction with some previous SAR information, imply two functional roles of the C-4 carbonyl: (1) to form H-bonds with N300; and (2) to regulate interactions of the fatty acid chain with membrane lipids. Impacts of these dual functions on antiproliferation depend on the overall structure of an Ipom-F derivative. Moreover, 11 can serve as a lead compound for developing future amino acid/peptide-modified analogues of Ipom-F with improved therapeutic properties. Full article
Show Figures

Figure 1

21 pages, 2210 KiB  
Review
EWSR1::ATF1 Translocation: A Common Tumor Driver of Distinct Human Neoplasms
by Julia Raffaella Bianco, YiJing Li, Agota Petranyi and Zsolt Fabian
Int. J. Mol. Sci. 2024, 25(24), 13693; https://doi.org/10.3390/ijms252413693 - 21 Dec 2024
Cited by 1 | Viewed by 2252
Abstract
Cancer is among the leading causes of mortality in developed countries due to limited available therapeutic modalities and high rate of morbidity. Although malignancies might show individual genetic landscapes, recurring aberrations in the neoplastic genome have been identified in the wide range of [...] Read more.
Cancer is among the leading causes of mortality in developed countries due to limited available therapeutic modalities and high rate of morbidity. Although malignancies might show individual genetic landscapes, recurring aberrations in the neoplastic genome have been identified in the wide range of transformed cells. These include translocations of frequently affected loci of the human genetic material like the Ewing sarcoma breakpoint region 1 (EWSR1) of chromosome 22 that results in malignancies with mesodermal origin. These cytogenetic defects frequently result in the genesis of fusion genes involving EWSR1 and a number of genes from partner loci. One of these chromosomal rearrangements is the reciprocal translocation between the q13 and q12 loci of chromosome 12 and 22, respectively, that is believed to initiate cancer formation by the genesis of a novel, chimeric transcription factor provoking dysregulated gene expression. Since soft-tissue neoplasms carrying t(12;22)(q13;q12) have very poor prognosis and clinical modalities specifically targeting t(12;22)(q13;q12)-harboring cells are not available to date, understanding this DNA aberration is not only timely but urgent. Here, we review our current knowledge of human malignancies carrying the specific subset of EWSR1 rearrangements that leads to the expression of the EWSR1::ATF1 tumor-driver chimeric protein. Full article
Show Figures

Figure 1

39 pages, 6873 KiB  
Review
Exploring Mycolactone—The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential
by Gideon Atinga Akolgo, Kingsley Bampoe Asiedu and Richard Kwamla Amewu
Toxins 2024, 16(12), 528; https://doi.org/10.3390/toxins16120528 - 6 Dec 2024
Cited by 1 | Viewed by 3072
Abstract
Mycolactone is a complex macrolide toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of [...] Read more.
Mycolactone is a complex macrolide toxin produced by Mycobacterium ulcerans, the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities. The review focuses on pioneering studies of Kishi which elaborate first-, second-, and third-generation approaches to the synthesis of mycolactones A/B. The three generations focused on the construction of the key intermediates required for the mycolactone synthesis. Synthesis of the first generation involves assignment of the relative and absolute stereochemistry of the mycolactones A and B. This was accomplished by employing a linear series of 17 chemical steps (1.3% overall yield) using the mycolactone core. The second generation significantly improved the first generation in three ways: (1) by optimizing the selection of protecting groups; (2) by removing needless protecting group adjustments; and (3) by enhancing the stereoselectivity and overall synthetic efficiency. Though the synthetic route to the mycolactone core was longer than the first generation, the overall yield was significantly higher (8.8%). The third-generation total synthesis was specifically aimed at an efficient, scalable, stereoselective, and shorter synthesis of mycolactone. The synthesis of the mycolactone core was achieved in 14 linear chemical steps with 19% overall yield. Furthermore, a modular synthetic approach where diverse analogues of mycolactone A/B were synthesized via a cascade of catalytic and/or asymmetric reactions as well as several Pd-catalyzed key steps coupled with hydroboration reactions were reviewed. In addition, the review discusses how mycolactone is employed in the diagnosis of Buruli ulcer with emphasis on detection methods of mass spectrometry, immunological assays, RNA aptamer techniques, and fluorescent-thin layer chromatography (f-TLC) methods as diagnostic tools. We examined studies of the structure–activity relationship (SAR) of various analogues of mycolactone. The paper highlights the multiple biological consequences associated with mycolactone such as skin ulceration, host immunomodulation, and analgesia. These effects are attributed to various proposed mechanisms of actions including Wiskott–Aldrich Syndrome protein (WASP)/neural Wiskott–Aldrich Syndrome protein (N-WASP) inhibition, Sec61 translocon inhibition, angiotensin II type 2 receptor (AT2R) inhibition, and inhibition of mTOR. The possible application of novel mycolactone analogues produced based on SAR investigations as therapeutic agents for the treatment of inflammatory disorders and inflammatory pain are discussed. Additionally, their therapeutic potential as anti-viral and anti-cancer agents have also been addressed. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

13 pages, 8554 KiB  
Article
The Role of Protein–Lipid Interactions in Priming the Bacterial Translocon
by Matt Sinclair and Emad Tajkhorshid
Membranes 2024, 14(12), 249; https://doi.org/10.3390/membranes14120249 - 24 Nov 2024
Viewed by 1613
Abstract
Protein–lipid interactions demonstrate important regulatory roles in the function of membrane proteins. Nevertheless, due to the semi-liquid nature and heterogeneity of biological membranes, and dissecting the details of such interactions at high resolutions continues to pose a major challenge to experimental biophysical techniques. [...] Read more.
Protein–lipid interactions demonstrate important regulatory roles in the function of membrane proteins. Nevertheless, due to the semi-liquid nature and heterogeneity of biological membranes, and dissecting the details of such interactions at high resolutions continues to pose a major challenge to experimental biophysical techniques. Computational techniques such as molecular dynamics (MD) offer an alternative approach with both temporally and spatially high resolutions. Here, we present an extensive series of MD simulations focused on the inner membrane protein YidC (PDB: 6AL2) from Escherichia coli, a key insertase responsible for the integration and folding of membrane proteins. Notably, we observed rare lipid fenestration events, where lipids fully penetrate the vestibule of YidC, providing new insights into the lipid-mediated regulation of protein insertion mechanisms. Our findings highlight the direct involvement of lipids in modulating the greasy slide of YidC and suggest that lipids enhance the local flexibility of the C1 domain, which is crucial for recruiting substrate peptides. These results contribute to a deeper understanding of how protein–lipid interactions facilitate the functional dynamics of membrane protein insertases, with implications for broader studies of membrane protein biology. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

28 pages, 5831 KiB  
Article
The RNA Helicase Ded1 from Yeast Is Associated with the Signal Recognition Particle and Is Regulated by SRP21
by Hilal Yeter-Alat, Naïma Belgareh-Touzé, Agnès Le Saux, Emmeline Huvelle, Molka Mokdadi, Josette Banroques and N. Kyle Tanner
Molecules 2024, 29(12), 2944; https://doi.org/10.3390/molecules29122944 - 20 Jun 2024
Cited by 1 | Viewed by 1657
Abstract
The DEAD-box RNA helicase Ded1 is an essential yeast protein involved in translation initiation that belongs to the DDX3 subfamily. The purified Ded1 protein is an ATP-dependent RNA-binding protein and an RNA-dependent ATPase, but it was previously found to lack substrate specificity and [...] Read more.
The DEAD-box RNA helicase Ded1 is an essential yeast protein involved in translation initiation that belongs to the DDX3 subfamily. The purified Ded1 protein is an ATP-dependent RNA-binding protein and an RNA-dependent ATPase, but it was previously found to lack substrate specificity and enzymatic regulation. Here we demonstrate through yeast genetics, yeast extract pull-down experiments, in situ localization, and in vitro biochemical approaches that Ded1 is associated with, and regulated by, the signal recognition particle (SRP), which is a universally conserved ribonucleoprotein complex required for the co-translational translocation of polypeptides into the endoplasmic reticulum lumen and membrane. Ded1 is physically associated with SRP components in vivo and in vitro. Ded1 is genetically linked with SRP proteins. Finally, the enzymatic activity of Ded1 is inhibited by SRP21 in the presence of SCR1 RNA. We propose a model where Ded1 actively participates in the translocation of proteins during translation. Our results provide a new understanding of the role of Ded1 during translation. Full article
Show Figures

Figure 1

23 pages, 1123 KiB  
Review
Current Novel Targeted Therapeutic Strategies in Multiple Myeloma
by Cindy Hsin-Ti Lin, Muhammad Junaid Tariq, Fauzia Ullah, Aishwarya Sannareddy, Farhan Khalid, Hasan Abbas, Abbas Bader, Christy Samaras, Jason Valent, Jack Khouri, Faiz Anwer, Shahzad Raza and Danai Dima
Int. J. Mol. Sci. 2024, 25(11), 6192; https://doi.org/10.3390/ijms25116192 - 4 Jun 2024
Cited by 8 | Viewed by 6824
Abstract
Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the [...] Read more.
Multiple myeloma (MM) is a hematologic malignancy caused by the clonal expansion of immunoglobulin-producing plasma cells in the bone marrow and/or extramedullary sites. Common manifestations of MM include anemia, renal dysfunction, infection, bone pain, hypercalcemia, and fatigue. Despite numerous recent advancements in the MM treatment paradigm, current therapies demonstrate limited long-term effectiveness and eventual disease relapse remains exceedingly common. Myeloma cells often develop drug resistance through clonal evolution and alterations of cellular signaling pathways. Therefore, continued research of new targets in MM is crucial to circumvent cumulative drug resistance, overcome treatment-limiting toxicities, and improve outcomes in this incurable disease. This article provides a comprehensive overview of the landscape of novel treatments and emerging therapies for MM grouped by molecular target. Molecular targets outlined include BCMA, GPRC5D, FcRH5, CD38, SLAMF7, BCL-2, kinesin spindle protein, protein disulfide isomerase 1, peptidylprolyl isomerase A, Sec61 translocon, and cyclin-dependent kinase 6. Immunomodulatory drugs, NK cell therapy, and proteolysis-targeting chimera are described as well. Full article
(This article belongs to the Special Issue New Targeted Therapeutic Strategies of Multiple Myeloma)
Show Figures

Figure 1

17 pages, 4907 KiB  
Article
B. subtilis Sec and Srp Systems Show Dynamic Adaptations to Different Conditions of Protein Secretion
by Svenja M. Fiedler and Peter L. Graumann
Cells 2024, 13(5), 377; https://doi.org/10.3390/cells13050377 - 22 Feb 2024
Cited by 1 | Viewed by 2424
Abstract
SecA is a widely conserved ATPase that drives the secretion of proteins across the cell membrane via the SecYEG translocon, while the SRP system is a key player in the insertion of membrane proteins via SecYEG. How SecA gains access to substrate proteins [...] Read more.
SecA is a widely conserved ATPase that drives the secretion of proteins across the cell membrane via the SecYEG translocon, while the SRP system is a key player in the insertion of membrane proteins via SecYEG. How SecA gains access to substrate proteins in Bacillus subtilis cells and copes with an increase in substrate availability during biotechnologically desired, high-level expression of secreted proteins is poorly understood. Using single molecule tracking, we found that SecA localization closely mimics that of ribosomes, and its molecule dynamics change similarly to those of ribosomes after inhibition of transcription or translation. These data suggest that B. subtilis SecA associates with signal peptides as they are synthesized at the ribosome, similar to the SRP system. In agreement with this, SecA is a largely mobile cytosolic protein; only a subset is statically associated with the cell membrane, i.e., likely with the Sec translocon. SecA dynamics were considerably different during the late exponential, transition, and stationary growth phases, revealing that single molecule dynamics considerably alter during different genetic programs in cells. During overproduction of a secretory protein, AmyE, SecA showed the strongest changes during the transition phase, i.e., where general protein secretion is high. To investigate whether the overproduction of AmyE also has an influence on other proteins that interact with SecYEG, we analyzed the dynamics of SecDF, YidC, and FtsY with and without AmyE overproduction. SecDF and YidC did not reveal considerable differences in single molecule dynamics during overexpression, while the SRP component FtsY changed markedly in its behavior and became more statically engaged. These findings indicate that the SRP pathway becomes involved in protein secretion upon an overload of proteins carrying a signal sequence. Thus, our data reveal high plasticity of the SecA and SRP systems in dealing with different needs for protein secretion. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Figure 1

15 pages, 2131 KiB  
Article
An Intrabody against B-Cell Receptor-Associated Protein 31 (BAP31) Suppresses the Glycosylation of the Epithelial Cell-Adhesion Molecule (EpCAM) via Affecting the Formation of the Sec61-Translocon-Associated Protein (TRAP) Complex
by Tianyi Wang, Changli Wang, Jiyu Wang and Bing Wang
Int. J. Mol. Sci. 2023, 24(19), 14787; https://doi.org/10.3390/ijms241914787 - 30 Sep 2023
Cited by 1 | Viewed by 1970
Abstract
The epithelial cell-adhesion molecule (EpCAM) is hyperglycosylated in carcinoma tissue and the oncogenic function of EpCAM primarily depends on the degree of glycosylation. Inhibiting EpCAM glycosylation is expected to have an inhibitory effect on cancer. We analyzed the relationship of BAP31 with 84 [...] Read more.
The epithelial cell-adhesion molecule (EpCAM) is hyperglycosylated in carcinoma tissue and the oncogenic function of EpCAM primarily depends on the degree of glycosylation. Inhibiting EpCAM glycosylation is expected to have an inhibitory effect on cancer. We analyzed the relationship of BAP31 with 84 kinds of tumor-associated antigens and found that BAP31 is positively correlated with the protein level of EpCAM. Triple mutations of EpCAM N76/111/198A, which are no longer modified by glycosylation, were constructed to determine whether BAP31 has an effect on the glycosylation of EpCAM. Plasmids containing different C-termini of BAP31 were constructed to identify the regions of BAP31 that affects EpCAM glycosylation. Antibodies against BAP31 (165–205) were screened from a human phage single-domain antibody library and the effect of the antibody (VH-F12) on EpCAM glycosylation and anticancer was investigated. BAP31 increases protein levels of EpCAM by promoting its glycosylation. The amino acid region from 165 to 205 in BAP31 plays an important role in regulating the glycosylation of EpCAM. The antibody VH-F12 significantly inhibited glycosylation of EpCAM which, subsequently, reduced the adhesion of gastric cancer cells, inducing cytotoxic autophagy, inhibiting the AKT-PI3K-mTOR signaling pathway, and, finally, resulting in proliferation inhibition both in vitro and in vivo. Finally, we clarified that BAP31 plays a key role in promoting N-glycosylation of EpCAM by affecting the Sec61 translocation channels. Altogether, these data implied that BAP31 regulates the N-glycosylation of EpCAM and may represent a potential therapeutic target for cancer therapy. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

21 pages, 4973 KiB  
Article
Mycolactone A vs. B: Multiscale Simulations Reveal the Roles of Localization and Association in Isomer-Specific Toxicity
by John D. M. Nguyen, Gabriel C. A. da Hora and Jessica M. J. Swanson
Toxins 2023, 15(8), 486; https://doi.org/10.3390/toxins15080486 - 2 Aug 2023
Cited by 2 | Viewed by 2583
Abstract
Mycolactone is an exotoxin produced by Mycobacterium ulcerans that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing several secretory and transmembrane proteins, resulting in cytotoxic and [...] Read more.
Mycolactone is an exotoxin produced by Mycobacterium ulcerans that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing several secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic. Here, we investigate the origin of this specificity by performing extensive molecular dynamics (MD) simulations with enhanced free energy sampling to query the association trends of the two isoforms with both the Sec61 translocon, using two distinct cryo-electron microscopy (cryo-EM) models as references, and the ER membrane, which serves as a toxin reservoir prior to association. Our results suggest that mycolactone B (the cytotoxic isoform) has a stronger association with the ER membrane than mycolactone A due to more favorable interactions with membrane lipids and water molecules. This could increase the reservoir of toxin proximal to the Sec61 translocon. In one model of Sec61 inhibited by mycolactone, we find that isomer B interacts more closely with residues thought to play a key role in signal peptide recognition and, thus, are essential for subsequent protein translocation. In the other model, we find that isomer B interacts more closely with the lumenal and lateral gates of the translocon, the dynamics of which are essential for protein translocation. These interactions induce a more closed conformation, which has been suggested to block signal peptide insertion and subsequent protein translocation. Collectively, these findings suggest that isomer B’s unique cytotoxicity is a consequence of both increased localization to the ER membrane and channel-locking association with the Sec61 translocon, facets that could be targeted in the development of Buruli Ulcer diagnostics and Sec61-targeted therapeutics. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

11 pages, 623 KiB  
Review
From Bacterial Toxin to Therapeutic Agent: The Unexpected Fate of Mycolactone
by Daniela Ricci and Caroline Demangel
Toxins 2023, 15(6), 369; https://doi.org/10.3390/toxins15060369 - 30 May 2023
Cited by 5 | Viewed by 2564
Abstract
“Recognizing a surprising fact is the first step towards discovery.” This famous quote from Louis Pasteur is particularly appropriate to describe what led us to study mycolactone, a lipid toxin produced by the human pathogen Mycobacterium ulcerans. M. ulcerans is the causative [...] Read more.
“Recognizing a surprising fact is the first step towards discovery.” This famous quote from Louis Pasteur is particularly appropriate to describe what led us to study mycolactone, a lipid toxin produced by the human pathogen Mycobacterium ulcerans. M. ulcerans is the causative agent of Buruli ulcer, a neglected tropical disease manifesting as chronic, necrotic skin lesions with a “surprising” lack of inflammation and pain. Decades after its first description, mycolactone has become much more than a mycobacterial toxin. This uniquely potent inhibitor of the mammalian translocon (Sec61) helped reveal the central importance of Sec61 activity for immune cell functions, the spread of viral particles and, unexpectedly, the viability of certain cancer cells. We report in this review the main discoveries that marked our research into mycolactone, and the medical perspectives they opened up. The story of mycolactone is not over and the applications of Sec61 inhibition may go well beyond immunomodulation, viral infections, and oncology. Full article
Show Figures

Figure 1

12 pages, 4690 KiB  
Article
A Putative TRAPα Protein of Microsporidia Nosema bombycis Exhibits Non-Canonical Alternative Polyadenylation in Transcripts
by Yujiao Wu, Ying Yu, Quan Sun, Yixiang Yu, Jie Chen, Tian Li, Xianzhi Meng, Guoqing Pan and Zeyang Zhou
J. Fungi 2023, 9(4), 407; https://doi.org/10.3390/jof9040407 - 25 Mar 2023
Cited by 1 | Viewed by 2990
Abstract
Microsporidia are obligate intracellular eukaryotic parasites that have significantly reduced genomes and that have lost most of their introns. In the current study, we characterized a gene in microsporidia Nosema bombycis, annotated as TRAPα (HNbTRAPα). The homologous of TRAPα are [...] Read more.
Microsporidia are obligate intracellular eukaryotic parasites that have significantly reduced genomes and that have lost most of their introns. In the current study, we characterized a gene in microsporidia Nosema bombycis, annotated as TRAPα (HNbTRAPα). The homologous of TRAPα are a functional component of ER translocon and facilitates the initiation of protein translocation in a substrate-specific manner, which is conserved in animals but absent from most fungi. The coding sequence of HNbTRAPα consists of 2226 nucleotides, longer than the majority of homologs in microsporidia. A 3′ RACE analysis indicated that there were two mRNA isoforms resulting from non-canonical alternative polyadenylation (APA), and the polyadenylate tail was synthesized after the C951 or C1167 nucleotide, respectively. Indirect immunofluorescence analysis showed two different localization characteristics of HNbTRAPα, which are mainly located around the nuclear throughout the proliferation stage and co-localized with the nuclear in mature spores. This study demonstrated that the post-transcriptional regulation mechanism exists in Microsporidia and expands the mRNA isoform repertoire. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Molecular Biology Research)
Show Figures

Figure 1

12 pages, 1783 KiB  
Article
Transcriptome Analysis Reveals the Effect of Low NaCl Concentration on Osmotic Stress and Type III Secretion System in Vibrio parahaemolyticus
by Youkun Zhang, Xiaotong Tan, Mingzhu Li, Peng Liu, Xinan Jiao and Dan Gu
Int. J. Mol. Sci. 2023, 24(3), 2621; https://doi.org/10.3390/ijms24032621 - 30 Jan 2023
Cited by 12 | Viewed by 3238
Abstract
Vibrio parahaemolyticus is a moderately halophilic foodborne pathogen that is mainly distributed in marine and freshwater environments. The transition of V. parahaemolyticus between aquatic ecosystems and hosts is essential for infection. Both freshwater and host environments have low salinity. In this study, we [...] Read more.
Vibrio parahaemolyticus is a moderately halophilic foodborne pathogen that is mainly distributed in marine and freshwater environments. The transition of V. parahaemolyticus between aquatic ecosystems and hosts is essential for infection. Both freshwater and host environments have low salinity. In this study, we sought to further investigate the effects of low salinity (0.5% NaCl) on the fitness and virulence of V. parahaemolyticus. We found that V. parahaemolyticus could survive in Luria–Bertani (LB) and M9 mediums with different NaCl concentrations, except for the M9 medium containing 9% NaCl. Our results further showed that V. parahaemolyticus cultured in M9 medium with 0.5% NaCl had a higher cell density than that cultured at other NaCl concentrations when it entered the stationary phase. Therefore, we compared the transcriptomes of V. parahaemolyticus wild type (WT) cultured in an M9 medium with 0.5% and 3% NaCl at the stationary phase using RNA-seq. A total of 658 genes were significantly differentially expressed in the M9 medium with 0.5% NaCl, including regulators, osmotic adaptive responses (compatible solute synthesis systems, transporters, and outer membrane proteins), and virulence factors (T3SS1 and T6SS1). Furthermore, a low salinity concentration in the M9 medium induced the expression of T3SS1 to mediate the cytotoxicity of V. parahaemolyticus to HeLa cells. Similarly, low salinity could also induce the secretion of the T3SS2 translocon protein VPA1361. These factors may result in the high pathogenicity of V. parahaemolyticus in low-salinity environments. Taken together, these results suggest that low salinity (0.5% NaCl) could affect gene expression to mediate fitness and virulence, which may contribute to the transition of V. parahaemolyticus between aquatic ecosystems and the host. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 2845 KiB  
Article
Genome Analysis Identifies a Novel Type III Secretion System (T3SS) Category in Vibrio Species
by Douaa Zakaria, Shigeaki Matsuda, Tetsuya Iida, Tetsuya Hayashi and Masanori Arita
Microorganisms 2023, 11(2), 290; https://doi.org/10.3390/microorganisms11020290 - 22 Jan 2023
Viewed by 6295
Abstract
The nanomachine referred to as the type III secretion system (T3SS) is used by many Gram-negative pathogens or symbionts to inject their effector proteins into host cells to promote their infections or symbioses. Among the genera possessing T3SS is Vibrio, which consists [...] Read more.
The nanomachine referred to as the type III secretion system (T3SS) is used by many Gram-negative pathogens or symbionts to inject their effector proteins into host cells to promote their infections or symbioses. Among the genera possessing T3SS is Vibrio, which consists of diverse species of Gammaproteobacteria including human pathogenic species and inhabits aquatic environments. We describe the genetic overview of the T3SS gene clusters in Vibrio through a phylogenetic analysis from 48 bacterial strains and a gene order analysis of the two previously known categories in Vibrio (T3SS1 and T3SS2). Through this analysis we identified a new T3SS category (named T3SS3) that shares similar core and related proteins (effectors, translocons, and chaperones) with the Ssa-Esc family of T3SSs in Salmonella, Shewanella, and Sodalis. The high similarity between T3SS3 and the Ssa-Esc family suggests a possibility of genetic exchange among marine bacteria with similar habitats. Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Show Figures

Figure 1

18 pages, 4552 KiB  
Review
Atomic Force Microscopy Reveals Complexity Underlying General Secretory System Activity
by Dylan R. Weaver and Gavin M. King
Int. J. Mol. Sci. 2023, 24(1), 55; https://doi.org/10.3390/ijms24010055 - 20 Dec 2022
Cited by 1 | Viewed by 2725
Abstract
The translocation of specific polypeptide chains across membranes is an essential activity for all life forms. The main components of the general secretory (Sec) system of E. coli include integral membrane translocon SecYEG, peripheral ATPase SecA, and SecDF, an ancillary complex that enhances [...] Read more.
The translocation of specific polypeptide chains across membranes is an essential activity for all life forms. The main components of the general secretory (Sec) system of E. coli include integral membrane translocon SecYEG, peripheral ATPase SecA, and SecDF, an ancillary complex that enhances polypeptide secretion by coupling translocation to proton motive force. Atomic force microscopy (AFM), a single-molecule imaging technique, is well suited to unmask complex, asynchronous molecular activities of membrane-associated proteins including those comprising the Sec apparatus. Using AFM, the dynamic structure of membrane-external protein topography of Sec system components can be directly visualized with high spatial-temporal precision. This mini-review is focused on AFM imaging of the Sec system in near-native fluid conditions where activity can be maintained and biochemically verified. Angstrom-scale conformational changes of SecYEG are reported on 100 ms timescales in fluid lipid bilayers. The association of SecA with SecYEG, forming membrane-bound SecYEG/SecA translocases, is directly visualized. Recent work showing topographical aspects of the translocation process that vary with precursor species is also discussed. The data suggests that the Sec system does not employ a single translocation mechanism. We posit that differences in the spatial frequency distribution of hydrophobic content within precursor sequences may be a determining factor in mechanism selection. Precise AFM investigations of active translocases are poised to advance our currently vague understanding of the complicated macromolecular movements underlying protein export across membranes. Full article
(This article belongs to the Special Issue Recent Advances in Single Molecule Studies)
Show Figures

Figure 1

Back to TopTop