Exploring Mycolactone—The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential
Abstract
:1. Introduction
2. Etymology of Buruli Ulcer
3. Mycobacterium ulcerans and Its Unique Toxin Mycolactone
3.1. Mycobacterium ulcerans
3.2. Mycolactone: The Unique Toxin Behind Mycobacterium ulcerans
3.3. Gross Structure of Mycolactones A and B
3.4. Biosynthesis of Mycolactone
3.5. Chemical Synthesis of Mycolactone A and B
3.5.1. First-Generation Total Synthesis (2001–2002)
3.5.2. First-Generation Synthesis of the Mycolactone Core
- Synthesis of the C1–C7 fragment
- Synthesis of the C8–C13 fragment
- Synthesis of the C14–C20 fragment
3.5.3. Assembly of the Mycolactone Core
3.5.4. Second-Generation Total Synthesis
3.5.5. Third-Generation Total Synthesis
3.5.6. Synthesis of a Suitably Protected Pentaenoic Acid
3.5.7. Completion of the First-Generation Synthesis of Mycolactone A/B
3.5.8. Modular Total Syntheses of Mycolactone A/B
4. Exploring Mycolactone as a Diagnostic Tool for Buruli Ulcer
4.1. Detection of Mycolactone Using Mass Spectrometry
4.2. Immunological Assays
4.3. Diagnosis of Buruli Ulcer with RNA Aptamers
4.4. Fluorescent-Thin Layer Chromatography (f-TLC)
5. Mycolactone: The Immunosuppressor, the Analgesic, and the Cytotoxic Toxin
5.1. Cellular Targets Responsible for the Mechanism of Action of Mycolactone
5.1.1. Wiskott–Aldrich Syndrome Protein (WASP) Inhibition
5.1.2. Inhibition of Sec61
5.1.3. Inhibition of Angiotensin II Type 2 Receptor (AT2R)
5.1.4. Inhibition of mTOR
5.2. Structure–Activity Relationship (SAR) Studies of Mycolactone
5.3. Therapeutic Potential of Mycolactone Analogues
5.3.1. Analgesic Effects of Mycolactone Analogues as Potential Pain Killers
5.3.2. Mycolactone Analogues as Potent Immunosuppressive Agent
5.3.3. Other Therapeutic Applications of Mycolactone Derivatives
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maccallum, P.; Tolhurst, J.C.; Buckle, G.; Sissons, H.A. A new mycobacterial infection in man. J. Pathol. Bacteriol. 1948, 60, 93–122. [Google Scholar] [CrossRef]
- WHO. Global Buruli Ulcer Initiative (GBUI)). 2017. Available online: http://www.who.int/buruli/en/ (accessed on 11 November 2023).
- Leão, S.C.; Romano, M.I.; Garcia, M.J. Tuberculosis, Leprosy, and Other Mycobacterioses. In Bioinformatics in Tropical Disease Research: A Practical and Case-Study Approach [Internet]; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2007. [Google Scholar]
- Asiedu, K.; Raviglione, M.C.; Scherpbier, R. Buruli Ulcer: Mycobacterium Ulcerans Infection; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- WHO. The Global Health Observatory: Number of New Reported Cases of Buruli Ulcer. 2023. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-new-reported-cases-of-buruli-ulcer (accessed on 28 May 2023).
- Guarner, J. Buruli Ulcer: Review of a Neglected Skin Mycobacterial Disease. J. Clin. Microbiol. 2018, 56, e01507-17. [Google Scholar] [CrossRef]
- WHO. Buruli Ulcer (Mycobacterium Ulcerans Infection). 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/buruli-ulcer-(mycobacterium-ulcerans-infection) (accessed on 21 May 2019).
- Sizaire, V.; Nackers, F.; Comte, E.; Portaels, F. Mycobacterium ulcerans infection: Control, diagnosis, and treatment. Lancet Infect. Dis. 2006, 6, 288–296. [Google Scholar] [CrossRef] [PubMed]
- WHO. Treatment of Mycobacterium Ulcerans Disease (Buruli Ulcer); World Health Organization: Geneva, Switzerland, 2012; pp. 1–76. [Google Scholar]
- George, K.M.; Pascopella, L.; Welty, D.M.; Small, P.L.C. A Mycobacterium ulceranstoxin, mycolactone, causes apoptosis in guinea pig ulcers and tissue culture cells. Infect. Immun. 2000, 68, 877–883. [Google Scholar] [CrossRef]
- WHO. The NTD Road Map: Together Towards 2030: WHO. 2023. Available online: https://www.who.int/teams/control-of-neglected-tropical-diseases (accessed on 28 May 2023).
- WHO. WHO Buruli Ulcer; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- WHO. Global Buruli Ulcer Initiative (GBUI). 2023. Available online: https://www.who.int/initiatives/global-buruli-ulcer-initiative-(gbui) (accessed on 25 May 2023).
- WHO. Distribution of Buruli Ulcer, Worldwide. 2015. Available online: http://gamapserver.who.int/mapLibrary/Files/Maps/Buruli_2015.png (accessed on 11 February 2020).
- Portaels, F.; Johnson, P.; Meyers, W.M.; World Health Organization. Initiative GBU. Buruli Ulcer: Diagnosis of Mycobacterium Ulcerans Disease: A Manual for Health Care Providers; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Yotsu, R.R.; Suzuki, K.; Simmonds, R.E.; Bedimo, R.; Ablordey, A.; Yeboah-Manu, D.; Phillips, R.; Asiedu, K. Buruli Ulcer: A Review of the Current Knowledge. Curr. Trop. Med. Rep. 2018, 5, 247–256. [Google Scholar] [CrossRef]
- WHO. Buruli Ulcer. 2024. Available online: https://www.who.int/data/gho/data/themes/topics/buruli-ulcer (accessed on 30 August 2024).
- Murchison, R.I. Address to the Royal Geographical Society. J. R. Geogr. Soc. Lond. 1863, 45, cxiii–cxcii. [Google Scholar] [CrossRef]
- Grant, J.A. A Walk Across Africa; or, Domestic Scenes from My Nile Journal; William Blackwood and Sons: London, UK, 1864; Available online: https://babel.hathitrust.org/cgi/pt?id=mdp.39015010462755&seq=8 (accessed on 15 April 2024). [CrossRef]
- Henry, R. Etymologia: Buruli Ulcer. Emerg. Infect. Dis. 2020, 26, 504. [Google Scholar] [CrossRef]
- Phanzu, D.M.; Ablordey, A.; Imposo, D.B.; Lefevre, L.; Mahema, R.L.; Suykerbuyk, P.; Meyers, W.M.; Portaels, F. Edematous Mycobacterium ulcerans Infection (Buruli Ulcer) on the Face: A Case Report. Am. J. Trop. Med. Hyg. 2007, 77, 1099–1102. [Google Scholar] [CrossRef]
- Nakanaga, K.; Yotsu, R.R.; Hoshino, Y.; Suzuki, K.; Makino, M.; Ishii, N. Buruli Ulcer and Mycolactone-Producing Mycobacteria. Jpn. J. Infect. Dis. 2013, 66, 83–88. [Google Scholar] [CrossRef]
- Cook, A. Mengo Hospital Notes. Br. Med. J. 1970, 2, 378–379. [Google Scholar]
- Chany, A.-C.; Tresse, C.; Casarotto, V.; Blanchard, N. History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Nat. Prod. Rep. 2013, 30, 1527–1567. [Google Scholar] [CrossRef]
- Wansbrough-Jones, M.; Phillips, R. Buruli ulcer: Emerging from obscurity. Lancet 2006, 367, 1849–1858. [Google Scholar] [CrossRef]
- Pradinaud, R.; Couppié, P.; Versapuech, J. Mycobactérioses cutanées environnementales dont l’infection à Mycobacterium ulcerans (ulcère de Buruli). EMC Maladies Infectieuses 2003, 1–10. [Google Scholar]
- Korman, T.M.; Johnson, P.D.; Hayman, J. Etymologia: Buruli Ulcer. Emerg. Infect. Dis. 2020, 26, 3104. [Google Scholar] [CrossRef] [PubMed]
- Bonamonte, D.; Filoni, A.; Angelini, G. Mycobacterium ulcerans Infection. In Mycobacterial Skin Infections; Bonamonte, D., Angelini, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 359–387. [Google Scholar]
- Buckle, G.; Tolhurst, J.C. A new mycobacterial infection in man; cultivation of the new Mycobacterial infection in man; cultivation of the new Mycobacterium. J. Pathol. Bacteriol. 1948, 60, 116–122. [Google Scholar]
- Fenner, F. The significance of the incubation period in infectious diseases. Med. J. Aust. 1950, 2, 813–818. [Google Scholar] [CrossRef]
- Palomino, J.C.; Obiang, A.M.; Realini, L.; Meyers, W.M.; Portaels, F. Effect of Oxygen on Growth of Mycobacterium ulcerans in the BACTEC System. J. Clin. Microbiol. 1998, 36, 3420–3422. [Google Scholar] [CrossRef]
- Clancey, J.; Dodge, O.; Lunn, H.; Oduori, M. Mycobacterial skin ulcers in uganda. Lancet 1961, 278, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Connor, D.H.; Washington, C.M.; Fletcher, L.H. Buruli ulceration. A clinicopathologic study of 38 Ugandans with Mycobacterium ulcerans ulceration. Arch Pathol. 1966, 81, 183–189. [Google Scholar]
- Lunn, H.F.; Connor, D.H.; E Wilks, N.; Barnley, G.R.; Kamunvi, F.; Clancey, J.K.; Bee, J.D. Buruli (Mycobacterial) Ulceration in uganda. (A New Focus of Buruli Ulcer in Madi District, Uganda): Report of a Field Study. East Afr. Med. J. 1965, 42, 275–288. [Google Scholar]
- Janssens, P.G.; Quertinmont, M.J.; Sieniawski, J.; Gatti, F. Necrotic tropical ulcers and mycobacterial causative agents. Trop. Geogr. Med. 1959, 11, 293–312. [Google Scholar]
- Clancey, J.; Dodge, R.; Lunn, H.F. Study of a mycobacterium causing skin ulceration in Uganda. Ann. Soc. Belg. Med. Trop. 1962, 42, 585–590. [Google Scholar]
- Dodge, O.G.; Lunn, H.F. Buruli ulcer: A mycobacterial skin ulcer in a Uganda child. J. Trop. Med. Hyg. 1962, 65, 139–142. [Google Scholar]
- Gehringer, M.; Altmann, K.-H. The chemistry and biology of mycolactones. Beilstein J. Org. Chem. 2017, 13, 1596–1660. [Google Scholar] [CrossRef]
- de Bär, M. Mycobacterium ulcerans infection in a child from Angola: Diagnosis by direct detection and culture. Trop. Med. Int. Health 1998, 3, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Brou, T.; Broutin, H.; Elguero, E.; Asse, H.; Guegan, J.-F. Landscape diversity related to buruli ulcer disease in côte d’ivoire. PLoS Neglected Trop. Dis. 2008, 2, e271. [Google Scholar] [CrossRef]
- Yotsu, R.R.; Murase, C.; Sugawara, M.; Suzuki, K.; Nakanaga, K.; Ishii, N.; Asiedu, K. Revisiting Buruli ulcer. J. Dermatol. 2015, 42, 1033–1041. [Google Scholar] [CrossRef]
- Stinear, T.P.; Seemann, T.; Pidot, S. Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res. 2007, 17, 192–200. [Google Scholar] [CrossRef]
- Sanhueza, D.; Chevillon, C.; Bouzinbi, N.; Godreuil, S.; Guégan, J.-F. Chitin increases mycobacterium ulcerans growth in acidic environments. Microbes Environ. 2018, 33, 234–237. [Google Scholar] [CrossRef]
- Sanhueza, D.; Guégan, J.-F.; Jordan, H.; Chevillon, C. Environmental variations in Mycobacterium ulcerans transcriptome: Absence of mycolactone expression in suboptimal environments. Toxins 2019, 11, 146. [Google Scholar] [CrossRef]
- Deshayes, C.; Angala, S.K.; Marion, E.; Brandli, I.; Babonneau, J.; Preisser, L.; Eyangoh, S.; Delneste, Y.; Legras, P.; De Chastellier, C.; et al. Regulation of Mycolactone, the Mycobacterium ulcerans Toxin, Depends on Nutrient Source. PLoS Neglected Trop. Dis. 2013, 7, e2502. [Google Scholar] [CrossRef]
- Willson, S.J.; Kaufman, M.G.; Merritt, R.W.; Williamson, H.R.; Malakauskas, D.M.; Benbow, M.E. Fish and amphibians as potential reservoirs of Mycobacterium ulcerans, the causative agent of Buruli ulcer disease. Infect. Ecol. Epidemiol. 2013, 3, 19946. [Google Scholar]
- Johnson, P.D.; Azuolas, J.; Lavender, C.J.; Wishart, E.; Stinear, T.P.; Hayman, J.A.; Brown, L.; Jenkin, G.A.; Fyfe, J.A. Mycobacterium ulcerans in mosquitoes captured during outbreak of Buruli ulcer, southeastern Australia. Emerg. Infect Dis. 2007, 13, 1653–1660. [Google Scholar] [CrossRef]
- Marsollier, L.; Robert, R.; Aubry, J.; André, J.-P.S.; Kouakou, H.; Legras, P.; Manceau, A.-L.; Mahaza, C.; Carbonnelle, B. Aquatic Insects as a Vector for Mycobacterium ulcerans. Appl. Environ. Microbiol. 2002, 68, 4623–4628. [Google Scholar] [CrossRef]
- Group TUB. Epidemiology of Mycobacterium ulcerans infection (Buruli ulcer) at Kinyara, Uganda. Trans. R. Soc. Trop. Med. Hyg. 1971, 65, 763–775. [Google Scholar] [CrossRef]
- Dhungel, L.; Benbow, M.E.; Jordan, H.R. Linking the Mycobacterium ulcerans environment to Buruli ulcer disease: Progress and challenges. One Health 2021, 13, 100311. [Google Scholar] [CrossRef]
- Pluschke, G.; Röltgen, K. Epidemiology and disease burden of Buruli ulcer: A review. Res. Rep. Trop. Med. 2015, 6, 59–73. [Google Scholar] [CrossRef]
- Ayelo, G.A.; Anagonou, E.; Wadagni, A.C.; Barogui, Y.T.; Dossou, A.D.; Houezo, J.G.; Aguiar, J.; Johnson, R.C.; Saizonou, R.; Asiedu, K.; et al. Report of a series of 82 cases of Buruli ulcer from Nigeria treated in Benin, from 2006 to 2016. PLoS Neglected Trop. Dis. 2018, 12, e0006358. [Google Scholar] [CrossRef] [PubMed]
- Tobias, N.J.; Seemann, T.; Pidot, S.J.; Porter, J.L.; Marsollier, L.; Marion, E.; Letournel, F.; Zakir, T.; Azuolas, J.; Wallace, J.R.; et al. Mycolactone gene expression is controlled by strong SigA-like promoters with utility in studies of Mycobacterium ulcerans and buruli ulcer. PLoS Negl. Trop. Dis. 2009, 3, e553. [Google Scholar] [CrossRef]
- Connor, D.H.; Lunn, H.F. Mycobacterium ulcerans infection (with comments on pathogenesis). Int. J. Lepr. 1965, 33, 698–709. [Google Scholar]
- Krieg, R.E.; Hockmeyer, W.T.; Connor, D.H. Toxin of Mycobacterium ulcerans. Production and effects in guinea pig skin. Arch Dermatol. 1974, 110, 783–788. [Google Scholar] [CrossRef]
- Read, J.K.; Heggie, C.M.; Meyers, W.M.; Connor, D.H. Cytotoxic Activity of Mycobacterium ulcerans. Infect. Immun. 1974, 9, 1114–1122. [Google Scholar] [CrossRef]
- George, K.M.; Chatterjee, D.; Gunawardana, G.; Welty, D.; Hayman, J.; Lee, R.; Small, P.L.C. Mycolactone: A Polyketide Toxin from Mycobacterium ulcerans Required for Virulence. Science 1999, 283, 854–857. [Google Scholar] [CrossRef]
- Guenin-Macé, L.; Ruf, M.-T.; Pluschke, G.; Demangel, C. Mycolactone: More than Just a Cytotoxin. Buruli Ulcer: Mycobacterium Ulcerans Disease; Springer: New York, NY, USA, 2019; pp. 117–134. [Google Scholar]
- Gunawardana, G.; Chatterjee, D.; George, K.M.; Brennan, P.; Whittern, D.; Small, P.L.C. Characterization of Novel Macrolide Toxins, Mycolactones A and B, from a Human Pathogen, Mycobacterium ulcerans. J. Am. Chem. Soc. 1999, 121, 6092–6093. [Google Scholar] [CrossRef]
- Demangel, C.; Stinear, T.P.; Cole, S.T. Buruli ulcer: Reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat. Rev. Microbiol. 2009, 7, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Demangel, C.; Pidot, S.J.; Leadlay, P.F.; Stinear, T. Mycolactones: Immunosuppressive and cytotoxic polyketides produced by aquatic mycobacteria. Nat. Prod. Rep. 2008, 25, 447–454. [Google Scholar] [CrossRef]
- Marion, E.; Song, O.-R.; Christophe, T.; Babonneau, J.; Fenistein, D.; Eyer, J.; Letournel, F.; Henrion, D.; Clere, N.; Paille, V.; et al. Mycobacterial Toxin Induces Analgesia in Buruli Ulcer by Targeting the Angiotensin Pathways. Cell 2014, 157, 1565–1576. [Google Scholar] [CrossRef]
- Kishi, Y. Chemistry of mycolactones, the causative toxins of Buruli ulcer. Proc. Natl. Acad. Sci. USA 2011, 108, 6703–6708. [Google Scholar] [CrossRef]
- Pimsler, M.; Sponsler, T.A.; Meyers, W.M. Immunosuppressive Properties of the Soluble Toxin from Mycobacterium ulcerans. J. Infect. Dis. 1988, 157, 577–580. [Google Scholar] [CrossRef]
- En, J.; Ishii, N.; Goto, M. Role of mycolactone in the nerve damage of Buruli ulcer (Mycobacterium ulcerans infection). Jpn. J. Lepr. Off. Organ Jpn. Lepr. Assoc. 2011, 80, 5–10. [Google Scholar] [CrossRef] [PubMed]
- En, J.; Goto, M.; Nakanaga, K.; Higashi, M.; Ishii, N.; Saito, H.; Yonezawa, S.; Hamada, H.; Small, P.L.C. Mycolactone Is Responsible for the Painlessness of Mycobacterium ulcerans infection (buruli ulcer) in a murine study. Infect. Immun. 2008, 76, 2002–2007. [Google Scholar] [CrossRef] [PubMed]
- Bozzo, C.; Tiberio, R.; Graziola, F.; Pertusi, G.; Valente, G.; Colombo, E.; Small, P.L.; Leigheb, G. A Mycobacterium ulcerans toxin, mycolactone, induces apoptosis in primary human keratinocytes and in HaCaT cells. Microbes Infect. 2010, 12, 1258–1263. [Google Scholar] [CrossRef]
- Walsh, D.S.; Hussem, K.; Gosi, P.; Myint, K.S.A.; Meyers, W.M.; Portaels, F.; Lane, J.E.; Mongkolsirichaikul, D. high rates of apoptosis in human mycobacterium ulcerans culture-positive buruli ulcer skin lesions. Am. J. Trop. Med. Hyg. 2005, 73, 410–415. [Google Scholar] [CrossRef]
- Coutanceau, E.; Marsollier, L.; Brosch, R.; Perret, E.; Goossens, P.; Tanguy, M.; Cole, S.T.; Small, P.L.C.; Demangel, C. Modulation of the host immune response by a transient intracellular stage of Mycobacterium ulcerans: The contribution of endogenous mycolactone toxin. Cell. Microbiol. 2005, 7, 1187–1196. [Google Scholar] [CrossRef]
- Torrado, E.; Adusumilli, S.; Fraga, A.G.; Small, P.L.C.; Castro, A.G.; Pedrosa, J. Mycolactone-mediated inhibition of tumor necrosis factor production by macrophages infected with Mycobacterium ulcerans has implications for the control of infection. Infect. Immun. 2007, 75, 3979–3988. [Google Scholar] [CrossRef]
- Torrado, E.; Fraga, A.G.; Castro, A.G.; Stragier, P.; Meyers, W.M.; Portaels, F.; Silva, M.T.; Pedrosa, J. Evidence for an Intramacrophage Growth Phase ofMycobacterium ulcerans. Infect. Immun. 2007, 75, 977–987. [Google Scholar] [CrossRef]
- Torrado, E.; Fraga, A.G.; Logarinho, E.; Martins, T.G.; Carmona, J.A.; Gama, J.B.; Carvalho, M.A.; Proença, F.; Castro, A.G.; Pedrosa, J. IFN-gamma-dependent activation of macrophages during experimental infections by Mycobacterium ulcerans is impaired by the toxin mycolactone. J. Immunol. 2010, 184, 947–955. [Google Scholar] [CrossRef]
- Hong, H.; Coutanceau, E.; Leclerc, M.; Caleechurn, L.; Leadlay, P.F.; Demangel, C. Mycolactone diffuses from mycobacterium ulcerans–infected tissues and targets mononuclear cells in peripheral blood and lymphoid organs. PLoS Neglected Trop. Dis. 2008, 2, e325. [Google Scholar] [CrossRef]
- Houngbédji, G.M.; Bouchard, P.; Frenette, J. Mycobacterium ulcerans infections cause progressive muscle atrophy and dysfunction, and mycolactone impairs satellite cell proliferation. Am. J. Physiol. Integr. Comp. Physiol. 2011, 300, R724–R732. [Google Scholar] [CrossRef]
- Houngbédji, G.M.; Côté, C.H.; Small, P.L.; Frenette, J. Limited repair and structural damages displayed by skeletal muscles loaded with mycolactone. Microbes Infect. 2009, 11, 238–244. [Google Scholar] [CrossRef]
- Adusumilli, S.; Mve-Obiang, A.; Sparer, T.; Meyers, W.; Hayman, J.; Small, P.L.C. Mycobacterium ulcerans toxic macrolide, mycolactone modulates the host immune response and cellular location of M. ulcerans in vitro and in vivo. Cell. Microbiol. 2005, 7, 1295–1304. [Google Scholar] [CrossRef]
- Snyder, D.; Small, P. Uptake and cellular actions of mycolactone, a virulence determinant for Mycobacterium ulcerans. Microb. Pathog. 2003, 34, 91–101. [Google Scholar] [CrossRef]
- Ranger, B.S.; Mahrous, E.A.; Mosi, L.; Adusumilli, S.; Lee, R.E.; Colorni, A.; Rhodes, M.; Small, P.L.C. Globally distributed mycobacterial fish pathogens produce a novel plasmid-encoded toxic macrolide, mycolactone F. Infect. Immun. 2006, 74, 6037–6045. [Google Scholar] [CrossRef]
- Sarfo, F.S.; Phillips, R.O.; Rangers, B.; Mahrous, E.A.; Lee, R.E.; Tarelli, E.; Asiedu, K.B.; Small, P.L.; Wansbrough-Jones, M.H. Detection of Mycolactone A/B in Mycobacterium ulcerans–Infected Human Tissue. PLoS Neglected Trop. Dis. 2010, 4, e577. [Google Scholar] [CrossRef]
- Coutanceau, E.; Decalf, J.; Martino, A.; Babon, A.; Winter, N.; Cole, S.T.; Albert, M.L.; Demangel, C. Selective suppression of dendritic cell functions by Mycobacterium ulcerans toxin mycolactone. J. Exp. Med. 2007, 204, 1395–1403. [Google Scholar] [CrossRef]
- Fraga, A.G.; Cruz, A.; Martins, T.G.; Torrado, E.; Saraiva, M.; Pereira, D.R.; Meyers, W.M.; Portaels, F.; Silva, M.T.; Castro, A.G.; et al. Mycobacterium ulcerans Triggers T-Cell Immunity followed by Local and Regional but Not Systemic Immunosuppression. Infect. Immun. 2011, 79, 421–430. [Google Scholar] [CrossRef]
- Guenin-Macé, L.; Carrette, F.; Asperti-Boursin, F.; Le Bon, A.; Caleechurn, L.; Di Bartolo, V.; Fontanet, A.; Bismuth, G.; Demangel, C. Mycolactone impairs T cell homing by suppressing microRNA control of L-selectin expression. Proc. Natl. Acad. Sci. USA 2011, 108, 12833–12838. [Google Scholar] [CrossRef]
- Dobos, K.M.; Small, P.L.; Deslauriers, M.; Quinn, F.D.; King, C.H. Mycobacterium ulcerans cytotoxicity in an adipose cell model. Infect. Immun. 2001, 69, 7182–7186. [Google Scholar] [CrossRef]
- Scherr, N.; Gersbach, P.; Dangy, J.-P.; Bomio, C.; Li, J.; Altmann, K.-H.; Pluschke, G. Structure-activity relationship studies on the macrolide exotoxin mycolactone of mycobacterium ulcerans. PLoS Neglected Trop. Dis. 2013, 7, e2143. [Google Scholar] [CrossRef]
- Bieri, R.; Scherr, N.; Ruf, M.-T.; Dangy, J.-P.; Gersbach, P.; Gehringer, M.; Altmann, K.-H.; Pluschke, G. The Macrolide Toxin Mycolactone Promotes Bim-Dependent Apoptosis in Buruli Ulcer through Inhibition of mTOR. ACS Chem. Biol. 2017, 12, 1297–1307. [Google Scholar] [CrossRef]
- Ruf, M.-T.; Steffen, C.; Bolz, M.; Schmid, P.; Pluschke, G. Infiltrating leukocytes surround early Buruli ulcer lesions, but are unable to reach the mycolactone producing mycobacteria. Virulence 2017, 8, 1918–1926. [Google Scholar] [CrossRef]
- Käser, M.; Hauser, J.; Small, P.; Pluschke, G. Large sequence polymorphisms unveil the phylogenetic relationship of environmental and pathogenic mycobacteria related to Mycobacterium ulcerans. Appl. Environ. Microbiol. 2009, 75, 5667–5675. [Google Scholar] [CrossRef]
- Yip, M.J.; Porter, J.L.; Fyfe, J.A.M.; Lavender, C.J.; Portaels, F.; Rhodes, M.; Kator, H.; Colorni, A.; Jenkin, G.A.; Stinear, T. Evolution of Mycobacterium ulcerans and other mycolactone-producing mycobacteria from a common Mycobacterium marinum progenitor. J. Bacteriol. 2007, 189, 2021–2029. [Google Scholar] [CrossRef]
- Pidot, S.J.; Hong, H.; Seemann, T.; Porter, J.L.; Yip, M.J.; Men, A.; Johnson, M.; Wilson, P.; Davies, J.K.; Leadlay, P.F.; et al. Deciphering the genetic basis for polyketide variation among mycobacteria producing mycolactones. BMC Genom. 2008, 9, 462. [Google Scholar] [CrossRef]
- Mve-Obiang, A.; Lee, R.E.; Portaels, F.; Small, P.L.C. Heterogeneity of Mycolactones Produced by Clinical Isolates of Mycobacterium ulcerans: Implications for Virulence. Infect. Immun. 2003, 71, 774–783. [Google Scholar] [CrossRef]
- Hong, H.; Spencer, J.B.; Porter, J.L.; Leadlay, P.F.; Stinear, T. A novel mycolactone from a clinical isolate of Mycobacterium ulcerans provides evidence for additional toxin heterogeneity as a result of specific changes in the modular polyketide synthase. ChemBioChem 2005, 6, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Mve-Obiang, A.; Lee, R.E.; Umstot, E.S.; Trott, K.A.; Grammer, T.C.; Parker, J.M.; Ranger, B.S.; Grainger, R.; Mahrous, E.A.; Small, P.L. A newly discovered mycobacterial pathogen isolated from laboratory colonies of Xenopus species with lethal infections produces a novel form of mycolactone, the Mycobacterium ulcerans macrolide toxin. Infect. Immun. 2005, 73, 3307–3312. [Google Scholar] [CrossRef]
- Trott, K.A.; A Stacy, B.; Lifland, B.D.; E Diggs, H.; Harland, R.M.; Khokha, M.K.; Grammer, T.C.; Parker, J.M. Characterization of a Mycobacterium ulcerans-like infection in a colony of African tropical clawed frogs (Xenopus tropicalis). Comp. Med. 2004, 54, 309–317. [Google Scholar]
- Stragier, P.; Hermans, K.; Stinear, T.; Portaels, F. First report of a mycolactone-producing Mycobacterium infection in fish agriculture in Belgium. FEMS Microbiol. Lett. 2008, 286, 93–95. [Google Scholar] [CrossRef]
- Kim, H.J.; Jackson, K.L.; Kishi, Y.; Williamson, H.R.; Mosi, L.; Small, P.L. Heterogeneity in the stereochemistry of mycolactones isolated from M. marinum: Toxins produced by fresh vs. saltwater fish pathogens. Chem. Commun. 2009, 47, 7402–7404. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kishi, Y. Total Synthesis and Stereochemistry of Mycolactone F. J. Am. Chem. Soc. 2008, 130, 1842–1844. [Google Scholar] [CrossRef]
- Hong, H.; Stinear, T.; Porter, J.; Demangel, C.; Leadlay, P.F. A Novel Mycolactone Toxin Obtained by Biosynthetic Engineering. ChemBioChem 2007, 8, 2043–2047. [Google Scholar] [CrossRef]
- Nakanaga, K.; Ogura, Y.; Toyoda, A.; Yoshida, M.; Fukano, H.; Fujiwara, N.; Miyamoto, Y.; Nakata, N.; Kazumi, Y.; Maeda, S.; et al. Naturally occurring a loss of a giant plasmid from Mycobacterium ulcerans subsp. shinshuense makes it non-pathogenic. Sci. Rep. 2018, 8, 8218. [Google Scholar] [CrossRef] [PubMed]
- Saint-Auret, S.; Chany, A.-C.; Casarotto, V.; Tresse, C.; Parmentier, L.; Abdelkafi, H.; Blanchard, N. Total Syntheses of Mycolactone A/B and its Analogues for the Exploration of the Biology of Buruli Ulcer. Chimia 2017, 71, 836–840. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Hayashi, N.; Tan, C.-H.; Kishi, Y. Toward the creation of NMR databases in chiral solvents for assignments of relative and absolute stereochemistry: Proof of concept. Org. Lett. 2001, 3, 2245–2248. [Google Scholar] [CrossRef]
- Fidanze, S.; Song, F.; Szlosek-Pinaud, M.; Small, P.L.C.; Kishi, Y. Complete Structure of the Mycolactones. J. Am. Chem. Soc. 2001, 123, 10117–10118. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, A.B.; Fidanze, S.; Small, P.L.C.; Kishi, Y. Stereochemistry of the Core Structure of the Mycolactones. J. Am. Chem. Soc. 2001, 123, 5128–5129. [Google Scholar] [CrossRef]
- Song, F.; Fidanze, S.; Benowitz, A.B.; Kishi, Y. Total synthesis of mycolactones A and B. Tetrahedron 2007, 63, 5739–5753. [Google Scholar] [CrossRef]
- Song, F.; Fidanze, S.; Benowitz, A.B.; Kishi, Y. Total Synthesis of the Mycolactones. Org. Lett. 2002, 4, 647–650. [Google Scholar] [CrossRef]
- van der Werf, T.S.; Stinear, T.; Stienstra, Y.; van der Graaf, W.T.; Small, P.L. Mycolactones and Mycobacterium ulcerans disease. Lancet 2003, 362, 1062–1064. [Google Scholar] [CrossRef]
- Stinear, T.P.; Hong, H.; Frigui, W.; Pryor, M.J.; Brosch, R.; Garnier, T.; Leadlay, P.F.; Cole, S.T. Common evolutionary origin for the unstable virulence plasmid pMUM found in geographically diverse strains of Mycobacterium ulcerans. J. Bacteriol. 2005, 187, 1668–1676. [Google Scholar] [CrossRef]
- Stinear, T.P.; Pryor, M.J.; Porter, J.L.; Cole, S.T. Functional analysis and annotation of the virulence plasmid pMUM001 from Mycobacterium ulcerans. Microbiology 2005, 151 Pt 3, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.L.; Tobias, N.J.; Hong, H.; Tuck, K.L.; Jenkin, G.A.; Stinear, T.P. Transfer, stable maintenance and expression of the mycolactone polyketide megasynthase mls genes in a recombination-impaired Mycobacterium marinum. Microbiology 2009, 155, 1923–1933. [Google Scholar] [CrossRef]
- Jenkin, G.A.; Stinear, T.P.; Johnson, P.D.R.; Davies, J.K. Subtractive hybridization reveals a type i polyketide synthase locus specific to Mycobacterium ulcerans. J. Bacteriol. 2003, 185, 6870–6882. [Google Scholar] [CrossRef]
- Townsend, C.A. Buruli toxin genes decoded. Proc. Natl. Acad. Sci. USA 2004, 101, 1116–1117. [Google Scholar] [CrossRef]
- Stinear, T.P.; Mve-Obiang, A.; Small, P.L.C.; Frigui, W.; Pryor, M.J.; Brosch, R.; Jenkin, G.A.; Johnson, P.D.R.; Davies, J.K.; Lee, R.E.; et al. Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc. Natl. Acad. Sci. USA 2004, 101, 1345–1349. [Google Scholar] [CrossRef]
- Tafelmeyer, P.; Laurent, C.; Lenormand, P.; Rousselle, J.; Marsollier, L.; Reysset, G.; Zhang, R.; Sickmann, A.; Stinear, T.P.; Namane, A.; et al. Comprehensive proteome analysis of Mycobacterium ulcerans and quantitative comparison of mycolactone biosynthesis. Proteomics 2008, 8, 3124–3138. [Google Scholar] [CrossRef]
- Käser, M.; Rondini, S.; Naegeli, M.; Stinear, T.; Portaels, F.; Certa, U.; Pluschke, G. Evolution of two distinct phylogenetic lineages of the emerging human pathogen Mycobacterium ulcerans. BMC Evol. Biol. 2007, 7, 177. [Google Scholar] [CrossRef]
- Porter, J.L.; Tobias, N.J.; Pidot, S.J.; Falgner, S.; Tuck, K.L.; Vettiger, A.; Hong, H.; Leadlay, P.F.; Stinear, T.P. The cell wall-associated mycolactone polyketide synthases are necessary but not sufficient for mycolactone biosynthesis. PLoS ONE 2013, 8, e70520. [Google Scholar] [CrossRef]
- Bali, S.; Weissman, K.J. Ketoreduction in mycolactone biosynthesis: Insight into substrate specificity and stereocontrol from studies of discrete ketoreductase domains in vitro. ChemBioChem 2006, 7, 1935–1942. [Google Scholar] [CrossRef]
- Goto, M.; Nakanaga, K.; Aung, T.; Hamada, T.; Yamada, N.; Nomoto, M.; Kitajima, S.; Ishii, N.; Yonezawa, S.; Saito, H. Nerve damage in mycobacterium ulcerans-infected mice: Probable cause of painlessness in buruli ulcer. Am. J. Pathol. 2006, 168, 805–811. [Google Scholar] [CrossRef]
- Marsollier, L.; Aubry, J.; Coutanceau, E.; André, J.-P.S.; Small, P.L.; Milon, G.; Legras, P.; Guadagnini, S.; Carbonnelle, B.; Cole, S.T. Colonization of the salivary glands of Naucoris cimicoides by Mycobacterium ulcerans requires host plasmatocytes and a macrolide toxin, mycolactone. Cell. Microbiol. 2005, 7, 935–943. [Google Scholar] [CrossRef]
- Phillips, R.; Sarfo, F.S.; Guenin-Macé, L.; Decalf, J.; Wansbrough-Jones, M.; Albert, M.L.; Demangel, C. Immunosuppressive Signature of Cutaneous Mycobacterium ulcerans infection in the peripheral blood of patients with buruli ulcer disease. J. Infect. Dis. 2009, 200, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.T.; Portaels, F.; Pedrosa, J. Pathogenetic mechanisms of the intracellular parasite Mycobacterium ulcerans leading to Buruli ulcer. Lancet Infect. Dis. 2009, 9, 699–710. [Google Scholar] [CrossRef]
- Cadapan, L.D.; Arslanian, R.L.; Carney, J.R.; Zavala, S.M.; Small, P.L.; Licari, P. Suspension cultivation of Mycobacterium ulcerans for the production of mycolactones. FEMS Microbiol Lett. 2001, 205, 385–389. [Google Scholar] [CrossRef]
- van Summeren, R.P.; Feringa, B.L.; Minnaard, A.J. New approaches towards the synthesis of the side-chain of mycolactones A and B. Org. Biomol. Chem. 2005, 3, 2524–2533. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Wang, G.; Qian, M.; Negishi, E. Stereoselective Synthesis of the side chains of mycolactones A and B featuring stepwise double substitutions of 1,1-dibromo-1-alkenes. Angew. Chem. Int. Ed. 2006, 45, 2916–2920. [Google Scholar] [CrossRef]
- Alexander, M.D.; Fontaine, S.D.; La Clair, J.J.; Dipasquale, A.G.; Rheingold, A.L.; Burkart, M.D. Synthesis of the mycolactone core by ring-closing metathesis. Chem. Commun. 2006, 44, 4602–4604. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.L.; Li, W.; Chen, C.-L.; Kishi, Y. Scalable and efficient synthesis of the mycolactone core. Tetrahedron 2010, 66, 2263–2272. [Google Scholar] [CrossRef]
- Judd, T.C.; Bischoff, A.; Kishi, Y.; Adusumilli, S.; Small, P.L.C. Structure Determination of Mycolactone C via Total Synthesis. Org. Lett. 2004, 6, 4901–4904. [Google Scholar] [CrossRef]
- Aubry, S.; Lee, R.E.; Mahrous, E.A.; Small, P.L.C.; Beachboard, D.; Kishi, Y. Synthesis and structure of mycolactone E isolated from frog mycobacterium. Org. Lett. 2008, 10, 5385–5388. [Google Scholar] [CrossRef]
- Wang, G.; Yin, N.; Negishi, E. Highly Stereoselective total synthesis of fully hydroxy-protected mycolactones A and B and Their stereoisomerization upon deprotection. Chem.–A Eur. J. 2011, 17, 4118–4130. [Google Scholar] [CrossRef]
- Gersbach, P.; Jantsch, A.; Feyen, F.; Scherr, N.; Dangy, J.P.; Pluschke, G.; Altmann, K.H. A ring-closing metathesis (RCM)-based approach to mycolactones A/B. Chemistry 2011, 17, 13017–13031. [Google Scholar] [CrossRef]
- Ko, K.-S.; Alexander, M.D.; Fontaine, S.D.; Biggs-Houck, J.E.; La Clair, J.J.; Burkart, M.D. Synthetic studies on the mycolactone core. Org. Biomol. Chem. 2010, 8, 5159–5165. [Google Scholar] [CrossRef]
- Gurjar, M.K.; Cherian, J. Studies toward Unique Mycolactone Macrolides from Mycobacterium ulcerans. Heterocycles 2001, 55, 1095–1104. [Google Scholar] [CrossRef]
- Blanchard, N.; Chany, A.-C.; Tresse, C.; Casarotto, V.; Bréthous, L.; Saint-Auret, S. Chapter 4—A Walk Across Africa with Captain Grant: Exploring Mycobacterium ulcerans Infection with Mycolactone Analogs. In Strategies and Tactics in Organic Synthesis. 11; Harmata, M., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 85–117. [Google Scholar]
- Wang, Y.; Dai, W. Synthesis of the Conjugated Tetraene Acid Side Chain of Mycolactone E by Suzuki–Miyaura Cross-Coupling Reaction of Alkenyl Boronates. Eur. J. Org. Chem. 2013, 2014, 323–330. [Google Scholar] [CrossRef]
- Brown, C.A.; Aggarwal, V.K. Short Convergent Synthesis of the Mycolactone Core Through Lithiation–Borylation Homologations. Chem.–A Eur. J. 2015, 21, 13900–13903. [Google Scholar] [CrossRef]
- Saint-Auret, S.; Abdelkafi, H.; Le Nouen, D.; Bisseret, P.; Blanchard, N. Synthetic strategies towards mycolactone A/B, an exotoxin secreted by Mycobacterium ulcerans. Org. Chem. Front. 2017, 4, 2380–2386. [Google Scholar] [CrossRef]
- Saint-Auret, S.; Abdelkafi, H.; Le Nouen, D.; Guenin-Macé, L.; Demangel, C.; Bisseret, P.; Blanchard, N. Modular total syntheses of mycolactone A/B and its [2H]-isotopologue. Org. Biomol. Chem. 2017, 15, 7518–7522. [Google Scholar] [CrossRef]
- Negishi, E.; Valente, L.F.; Kobayashi, M. Palladium-catalyzed cross-coupling reaction of homoallylic or homopropargylic organozincs with alkenyl halides as a new selective route to 1,5-dienes and 1,5-enynes. J. Am. Chem. Soc. 1980, 102, 3298–3299. [Google Scholar] [CrossRef]
- Negishi, E.; Okukado, N.; King, A.O.; Van Horn, D.E.; Spiegel, B.I. Selective carbon-carbon bond formation via transition metal catalysts. 9. Double metal catalysis in the cross-coupling reaction and its application to the stereo- and regioselective synthesis of trisubstituted olefins. J. Am. Chem. Soc. 1978, 100, 2254–2256. [Google Scholar] [CrossRef]
- Horner, L.; Hoffmann, H.; Wippel, H.G. Phosphororganische Verbindungen, XII. Phosphinoxyde als Olefinierungsreagenzien. Eur. J. Inorg. Chem. 1958, 91, 61–63. [Google Scholar] [CrossRef]
- Wadsworth, W.S.; Emmons, W.D. The Utility of Phosphonate Carbanions in Olefin Synthesis. J. Am. Chem. Soc. 1961, 83, 1733–1738. [Google Scholar] [CrossRef]
- Smith, A.B.; Qiu, Y.; Jones, D.R.; Kobayashi, K. Total Synthesis of (-)-Discodermolide. J. Am. Chem. Soc. 1995, 117, 12011–12012. [Google Scholar] [CrossRef]
- Smith, P.G.; Revill, W.D.L.; Lukwago, E.; Rykushin, Y. The protective effect of BCG against Mycobacterium ulcerans disease: A controlled trial in an endemic area of Uganda. Trans. R. Soc. Trop. Med. Hyg. 1976, 70, 449–457. [Google Scholar] [CrossRef]
- Murakami, N.; Wang, W.; Aoki, M.; Tsutsui, Y.; Higuchi, K.; Aoki, S.; Kobayashi, M. Absolute stereostructure of callystatin A, a potent cytotoxic polyketide from the marine sponge, Callyspongia truncata. Tetrahedron Lett. 1997, 38, 5533–5536. [Google Scholar] [CrossRef]
- Brown, H.C.; Bhat, K.S. Enantiomeric Z- and E-crotyldiisopinocampheylboranes. Synthesis in high optical purity of all four possible stereoisomers of beta.-methylhomoallyl alcohols. J. Am. Chem. Soc. 1986, 108, 293–294. [Google Scholar] [CrossRef]
- Brown, H.C.; Bhat, K.S. Chiral synthesis via organoboranes. 7. Diastereoselective and enantioselective synthesis of erythro- and threo-.beta.-methylhomoallyl alcohols via enantiomeric (Z)- and (E)-crotylboranes. J. Am. Chem. Soc. 1986, 108, 5919–5923. [Google Scholar] [CrossRef]
- Smith, A.B., III; Akaishi, R.; Jones, D.R.; Keenam, T.P.; Guzman, M.C.; Holcomb, R.C.; Sprengeler, P.A.; Wood, J.L.; Hirschmann, R.; Holloway, M.K. Design and synthesis of nonpeptide peptidomimetic inhibitors of renin. Biopolymers 1995, 37, 29–53. [Google Scholar] [CrossRef]
- Paterson, I.; Craw, P.A. Studies in polyether synthesis: Controlled bisepoxide cyclisation using a β-diketone group. Tetrahedron Lett. 1989, 30, 5799–5802. [Google Scholar] [CrossRef]
- Jacobsen, E.N.; Marko, I.; Mungall, W.S.; Schroeder, G.; Sharpless, K.B. Asymmetric dihydroxylation via ligand-accelerated catalysis. J. Am. Chem. Soc. 1988, 110, 1968–1970. [Google Scholar] [CrossRef]
- Sharpless, K.B.; Amberg, W.; Bennani, Y.L.; Crispino, G.A.; Hartung, J.; Jeong, K.S.; Kwong, H.L.; Morikawa, K.; Wang, Z.M. The osmium-catalyzed asymmetric dihydroxylation: A new ligand class and a process improvement. J. Org. Chem. 1992, 57, 2768–2771. [Google Scholar] [CrossRef]
- Corey, E.J.; Fuchs, P.L. A synthetic method for formyl→ethynyl conversion (RCHO→RC≡CH or RC≡CR′). Tetrahedron Lett. 1972, 13, 3769–3772. [Google Scholar] [CrossRef]
- Sarfo, F.S.; O Phillips, R.; Zhang, J.; Abass, M.K.; Abotsi, J.; A Amoako, Y.; Adu-Sarkodie, Y.; Robinson, C.; Wansbrough-Jones, M.H. Kinetics of mycolactone in human subcutaneous tissue during antibiotic therapy for Mycobacterium ulcerans disease. BMC Infect. Dis. 2014, 14, 202. [Google Scholar] [CrossRef]
- Dangy, J.-P.; Scherr, N.; Gersbach, P.; Hug, M.N.; Bieri, R.; Bomio, C.; Li, J.; Huber, S.; Altmann, K.-H.; Pluschke, G. Antibody-mediated neutralization of the exotoxin mycolactone, the main virulence factor produced by mycobacterium ulcerans. PLoS Neglected Trop. Dis. 2016, 10, e0004808. [Google Scholar] [CrossRef]
- Warryn, L.; Dangy, J.-P.; Gersbach, P.; Gehringer, M.; Schäfer, A.; Ruf, M.-T.; Ruggli, N.; Altmann, K.-H.; Pluschke, G. Development of an ELISA for the quantification of mycolactone, the cytotoxic macrolide toxin of Mycobacterium ulcerans. PLoS Neglected Trop. Dis. 2020, 14, e0008357. [Google Scholar] [CrossRef]
- Warryn, L.; Dangy, J.-P.; Gersbach, P.; Gehringer, M.; Altmann, K.-H.; Pluschke, G. An Antigen Capture Assay for the Detection of Mycolactone, the Polyketide Toxin of Mycobacterium ulcerans. J. Immunol. 2021, 206, 2753–2762. [Google Scholar] [CrossRef] [PubMed]
- Kubicek-Sutherland, J.Z.; Swanson, B.I.; Mukundanm, H. Conditions for Handling and Optimal Storage of Mycolactone. Methods Mol. Biol. 2022, 2387, 109–116. [Google Scholar]
- Sakakibara, Y.; Konishi, M.; Ueno, T.; Murase, C.; Miyamoto, Y.; Ato, M.; de Souza, D.K.; Biamonte, M.; Pluschke, G.; Yotsu, R.R. Pilot use of a mycolactone-specific lateral flow assay for Buruli ulcer: A case report from Japan. J. Clin. Tuberc. Other Mycobact. Dis. 2024, 36, 100469. [Google Scholar] [CrossRef]
- Sakyi, S.A.; Aboagye, S.Y.; Otchere, I.D.; Liao, A.M.; Caltagirone, T.G.; Yeboah-Manu, D. RNA Aptamer That Specifically Binds to Mycolactone and Serves as a Diagnostic Tool for Diagnosis of Buruli Ulcer. PLoS Neglected Trop. Dis. 2016, 10, e0004950. [Google Scholar] [CrossRef]
- Hicke, B.J.; Stephens, A.W. Escort aptamers: A delivery service for diagnosis and therapy. J. Clin. Investig. 2000, 106, 923–928. [Google Scholar] [CrossRef]
- Ellen, D.E.; Stienstra, Y.; Teelken, M.A.; Dijkstra, P.U.; Van Der Graaf, W.T.A.; Van Der Werf, T.S. Assessment of functional limitations caused by Mycobacterium ulcerans infection: Towards a buruli ulcer functional limitation score. Trop. Med. Int. Health 2003, 8, 90–96. [Google Scholar] [CrossRef]
- Affolabi, D.; Bankolé, H.; Ablordey, A.; Hounnouga, J.; Koutchakpo, P.; Sopoh, G.; Aguiar, J.; Dossou, A.; Johnson, R.C.; Anagonou, S.; et al. Effects of grinding surgical tissue specimens and smear staining methods on Buruli ulcer microscopic diagnosis. Trop. Med. Int. Health 2008, 13, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Ross, B.C.; Marino, L.; Oppedisano, F.; Edwards, R.; Robins-Browne, R.M.; Johnson, P.D. Development of a PCR assay for rapid diagnosis of Mycobacterium ulcerans infection. J. Clin. Microbiol. 1997, 35, 1696–1700. [Google Scholar] [CrossRef]
- Kim, B.-J.; Lee, K.-H.; Park, B.-N.; Kim, S.-J.; Bai, G.-H.; Kim, S.-J.; Kook, Y.-H. Differentiation of mycobacterial species by PCR-restriction analysis of DNA (342 base pairs) of the RNA polymerase gene (rpoB). J. Clin. Microbiol. 2001, 39, 2102–2109. [Google Scholar] [CrossRef]
- Yang, C.J.; Jockusch, S.; Vicens, M.; Turro, N.J.; Tan, W. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc. Natl. Acad. Sci. USA 2005, 102, 17278–17283. [Google Scholar] [CrossRef]
- Daniel, A.K.; Lee, R.E.; Portaels, F.; Small, P.L. Analysis of Mycobacterium species for the presence of a macrolide toxin, mycolactone. Infect Immun. 2004, 72, 123–132. [Google Scholar] [CrossRef]
- George, K.M.; Barker, L.P.; Welty, D.M.; Small, P.L.C. Partial Purification and characterization of biological effects of a lipid toxin produced by Mycobacterium ulcerans. Infect. Immun. 1998, 66, 587–593. [Google Scholar] [CrossRef]
- Spangenberg, T.; Kishi, Y. Highly sensitive, operationally simple, cost/time effective detection of the mycolactones from the human pathogen Mycobacterium ulcerans. Chem. Commun. 2010, 46, 1410–1412. [Google Scholar] [CrossRef]
- Bull, S.D.; Davidson, M.G.; van den Elsen, J.M.H.; Fossey, J.S.; Jenkins, T.-A.; Jiang, Y.-B.; Kubo, Y.; Marken, F.; Sakurai, K.; Zhao, J.; et al. Exploiting the reversible covalent bonding of boronic acids: Recognition, sensing, and assembly. Acc. Chem. Res. 2013, 46, 312–326. [Google Scholar] [CrossRef]
- Converse, P.J.; Xing, Y.; Kim, K.H.; Tyagi, S.; Li, S.-Y.; Almeida, D.V.; Nuermberger, E.L.; Grosset, J.H.; Kishi, Y. Accelerated Detection of Mycolactone production and response to antibiotic treatment in a mouse model of mycobacterium ulcerans disease. PLoS Neglected Trop. Dis. 2014, 8, e2618. [Google Scholar] [CrossRef]
- Wadagni, A.; Frimpong, M.; Phanzu, D.M.; Ablordey, A.; Kacou, E.; Gbedevi, M.; Marion, E.; Xing, Y.; Babu, V.S.; Phillips, R.O.; et al. Simple, Rapid Mycobacterium ulcerans Disease Diagnosis from Clinical Samples by Fluorescence of Mycolactone on Thin Layer Chromatography. PLoS Neglected Trop. Dis. 2015, 9, e0004247. [Google Scholar] [CrossRef]
- Siegmund, V.; Adjei, O.; Nitschke, J.; Thompson, W.; Klutse, E.; Herbinger, K.H.; Thompson, R.; van Vloten, F.; Racz, P.; Fleischer, B.; et al. Dry reagent-based polymerase chain reaction compared with other laboratory methods available for the diagnosis of buruli ulcer disease. Clin. Infect. Dis. 2007, 45, 68–75. [Google Scholar] [CrossRef]
- Phillips, R.; Horsfield, C.; Kuijper, S.; Lartey, A.; Tetteh, I.; Etuaful, S.; Nyamekye, B.; Awuah, P.; Nyarko, K.M.; Osei-Sarpong, F.; et al. Sensitivity of PCR targeting the IS 2404 insertion sequence of Mycobacterium ulcerans in an assay using punch biopsy specimens for diagnosis of buruli ulcer. J. Clin. Microbiol. 2005, 43, 3650–3656. [Google Scholar] [CrossRef]
- Amewu, R.K.; Akolgo, G.A.; Asare, M.E.; Abdulai, Z.; Ablordey, A.S.; Asiedu, K. Evaluation of the fluorescent-thin layer chromatography (f-TLC) for the diagnosis of Buruli ulcer disease in Ghana. PLoS ONE 2022, 17, e0270235. [Google Scholar] [CrossRef]
- Akolgo, G.A.; Partridge, B.M.; DCraggs, T.; Amewu, R.K. Alternative boronic acids in the detection of Mycolactone A/B using the thin layer chromatography (f-TLC) method for diagnosis of Buruli ulcer. BMC Infect. Dis. 2023, 23, 495. [Google Scholar] [CrossRef]
- Johnson, P.D.; Stinear, T.; Small, P.L.; Pluschke, G.; Merritt, R.W.; Portaels, F.; Huygen, K.; Hayman, J.A.; Asiedu, K. Buruli ulcer (M. ulcerans infection): New insights, new hope for disease control. PLoS Med. 2005, 2, e108. [Google Scholar] [CrossRef]
- Van der Werf, T.S.; Van der Graaf, W.T.A.; Tappero, J.W.; Asiedu, K. Mycobacterium ulcerans infection. Lancet 1999, 354, 1013–1018. [Google Scholar] [CrossRef]
- Boulkroun, S.; Guenin-Macé, L.; Thoulouze, M.-I.; Monot, M.; Merckx, A.; Langsley, G.; Bismuth, G.; Di Bartolo, V.; Demangel, C. Mycolactone suppresses T Cell responsiveness by altering both early signaling and posttranslational events. J. Immunol. 2009, 184, 1436–1444. [Google Scholar] [CrossRef]
- Hall, B.S.; Hill, K.; McKenna, M.; Ogbechi, J.; High, S.; Willis, A.E.; Simmonds, R.E. The pathogenic mechanism of the mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER. PLoS Pathog. 2014, 10, e1004061. [Google Scholar] [CrossRef]
- Hall, B.; Simmonds, R. Pleiotropic molecular effects of the Mycobacterium ulcerans virulence factor mycolactone underlying the cell death and immunosuppression seen in Buruli ulcer. Biochem. Soc. Trans. 2014, 42, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Demangel, C.; High, S. Sec61 blockade by mycolactone: A central mechanism in Buruli ulcer disease. Biol. Cell 2018, 110, 237–248. [Google Scholar] [CrossRef]
- Anand, U.; Sinisi, M.; Fox, M.; MacQuillan, A.; Quick, T.; Korchev, Y.; Bountra, C.; McCarthy, T.; Anand, P. Mycolactone-mediated neurite degeneration and functional effects in cultured human and rat DRG neurons: Mechanisms underlying hypoalgesia in Buruli ulcer. Mol Pain. 2016, 12, 1744806916654144. [Google Scholar] [CrossRef]
- López, C.A.; Unkefer, C.J.; Swanson, B.I.; Swanson, J.M.; Gnanakaran, S. Membrane perturbing properties of toxin mycolactone from Mycobacterium ulcerans. PLoS Comput. Biol. 2018, 14, e1005972. [Google Scholar] [CrossRef]
- McKenna, M.; Simmonds, R.E.; High, S. Mechanistic insights into the inhibition of Sec61-dependent co- and post-translational translocation by mycolactone. J. Cell Sci. 2016, 129, 1404–1415. [Google Scholar] [CrossRef]
- Guenin-Macé, L.; Veyron-Churlet, R.; Thoulouze, M.-I.; Romet-Lemonne, G.; Hong, H.; Leadlay, P.F.; Danckaert, A.; Ruf, M.-T.; Mostowy, S.; Zurzolo, C.; et al. Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation. J. Clin. Investig. 2013, 123, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Guenin-Macé, L.; Baron, L.; Chany, A.-C.; Tresse, C.; Saint-Auret, S.; Jönsson, F.; Le Chevalier, F.; Bruhns, P.; Bismuth, G.; Hidalgo-Lucas, S.; et al. Shaping mycolactone for therapeutic use against inflammatory disorders. Sci. Transl. Med. 2015, 7, 289ra85. [Google Scholar] [CrossRef]
- Claessen, J.H.; Kundrat, L.; Ploegh, H.L. Protein quality control in the ER: Balancing the ubiquitin checkbook. Trends Cell Biol. 2012, 22, 22–32. [Google Scholar] [CrossRef]
- Baron, L.; Paatero, A.O.; Morel, J.-D.; Impens, F.; Guenin-Macé, L.; Saint-Auret, S.; Blanchard, N.; Dillmann, R.; Niang, F.; Pellegrini, S.; et al. Mycolactone subverts immunity by selectively blocking the Sec61 translocon. J. Exp. Med. 2016, 213, 2885–2896. [Google Scholar] [CrossRef]
- Isaac, C.; Mauborgne, A.; Grimaldi, A.; Ade, K.; Pohl, M.; Limatola, C.; Boucher, Y.; Demangel, C.; Guenin-Macé, L. Mycolactone displays anti-inflammatory effects on the nervous system. PLoS Neglected Trop. Dis. 2017, 11, e0006058. [Google Scholar] [CrossRef]
- Itskanov, S.; Wang, L.; Junne, T.; Sherriff, R.; Xiao, L.; Blanchard, N.; Shi, W.Q.; Forsyth, C.; Hoepfner, D.; Spiess, M.; et al. A common mechanism of Sec61 translocon inhibition by small molecules. Nat. Chem. Biol. 2023, 19, 1063–1071. [Google Scholar] [CrossRef]
- Ricci, D.; Demangel, C. From Bacterial Toxin to Therapeutic Agent: The Unexpected Fate of Mycolactone. Toxins 2023, 15, 369. [Google Scholar] [CrossRef]
- Kawashima, A.; Kiriya, M.; En, J.; Tanigawa, K.; Nakamura, Y.; Fujiwara, Y.; Luo, Y.; Maruyama, K.; Watanabe, S.; Goto, M.; et al. Genome-wide screening identified SEC61A1 as an essential factor for mycolactone-dependent apoptosis in human premonocytic THP-1 cells. PLoS Neglected Trop. Dis. 2022, 16, e0010672. [Google Scholar] [CrossRef]
- Gérard, S.F.; Hall, B.S.; Zaki, A.M.; Corfield, K.A.; Mayerhofer, P.U.; Costa, C.; Whelligan, D.K.; Biggin, P.C.; Simmonds, R.E.; Higgins, M.K. Structure of the Inhibited State of the Sec Translocon. Mol. Cell 2020, 79, 406–415.e7. [Google Scholar] [CrossRef]
- da Hora, G.C.A.; Nguyen, J.D.M.; Swanson, J.M.J. Can membrane composition traffic toxins? Mycolactone and preferential membrane interactions. Biophys J. 2022, 121, 4260–4270. [Google Scholar] [CrossRef]
- Nguyen, J.D.M.; da Hora, G.C.A.; Swanson, J.M.J. Mycolactone A vs. B: Multiscale Simulations Reveal the Roles of Localization and Association in Isomer-Specific Toxicity. Toxins 2023, 15, 486. [Google Scholar] [CrossRef]
- Noël, J.; Sandoz, G.; Lesage, F. Molecular regulations governing TREK and TRAAK channel functions. Channels 2011, 5, 402–409. [Google Scholar] [CrossRef]
- Ocaña, M.; Cendán, C.M.; Cobos, E.J.; Entrena, J.M.; Baeyens, J.M. Potassium channels and pain: Present realities and future opportunities. Eur. J. Pharmacol. 2004, 500, 203–219. [Google Scholar] [CrossRef]
- Hargreaves, K.; Dubner, R.; Brown, F.; Flores, C.; Joris, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32, 77–88. [Google Scholar] [CrossRef]
- Babonneau, J.; Bréard, D.; Reynaert, M.-L.; Marion, E.; Guilet, D.; André, J.-P.S.; Croué, A.; Brodin, P.; Richomme, P.; Marsollier, L. Mycolactone as analgesic: Subcutaneous bioavailability parameters. Front. Pharmacol. 2019, 10, 378. [Google Scholar] [CrossRef] [PubMed]
- Song, O.-R.; Kim, H.-B.; Jouny, S.; Ricard, I.; Vandeputte, A.; Deboosere, N.; Marion, E.; Queval, C.J.; Lesport, P.; Bourinet, E.; et al. A bacterial toxin with analgesic properties: Hyperpolarization of DRG neurons by mycolactone. Toxins 2017, 9, 227. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Facer, P.; Yiangou, Y.; Sinisi, M.; Fox, M.; McCarthy, T.; Bountra, C.; Korchev, Y.; Anand, P. Angiotensin II type 2 receptor (AT2R) localization and antagonist-mediated inhibition of capsaicin responses and neurite outgrowth in human and rat sensory neurons. Eur. J. Pain 2012, 17, 1012–1026. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Fevereiro, J.; Fraga, A.G.; Capela, C.; Sopoh, G.E.; Dossou, A.; Ayelo, G.A.; Peixoto, M.J.; Cunha, C.; Carvalho, A.; Rodrigues, F.; et al. Genetic variants in human BCL2L11 (BIM) are associated with ulcerative forms of Buruli ulcer. Emerg. Microbes Infect. 2021, 10, 223–225. [Google Scholar] [CrossRef]
- Altmann, K.-H.; Feyen, F.; Jantsch, A. Synthetic studies on mycolactones: Synthesis of the mycolactone core structure through ring-closing olefin metathesis. Synlett 2007, 2007, 0415–0418. [Google Scholar] [CrossRef]
- Chany, A.; Casarotto, V.; Schmitt, M.; Tarnus, C.; Guenin-Macé, L.; Demangel, C.; Mirguet, O.; Eustache, J.; Blanchard, N. A Diverted total synthesis of mycolactone analogues: An insight into buruli ulcer toxins. Chem.–A Eur. J. 2011, 17, 14413–14419. [Google Scholar] [CrossRef]
- Chany, A.-C.; Veyron-Churlet, R.; Tresse, C.; Mayau, V.; Casarotto, V.; Le Chevalier, F.; Guenin-Macé, L.; Demangel, C.; Blanchard, N. Synthetic variants of mycolactone bind and activate wiskott–aldrich syndrome proteins. J. Med. Chem. 2014, 57, 7382–7395. [Google Scholar] [CrossRef]
- Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; et al. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain 2020, 161, 1976–1982. [Google Scholar] [CrossRef]
- Schweitzer, A. Pain is More Terrible Lord of Mankind than Even Death Itself. Pain Policy Palliative Care. 2011. Available online: https://www.industrydocuments.ucsf.edu/opioids/docs/#id=kxhh0244 (accessed on 2 December 2024).
- Melnikova, I. Pain market. Nat. Rev. Drug Discov. 2010, 9, 589. [Google Scholar] [CrossRef]
- Policy BoHS, Research CoAP, Care. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Woodcock, J. A difficult balance—Pain management, drug safety, and the FDA. N. Engl. J. Med. 2009, 361, 2105–2107. [Google Scholar] [CrossRef]
- Borsook, D.; Hargreaves, R.; Bountra, C.; Porreca, F. Lost but making progress—Where will new analgesic drugs come from? Sci. Transl. Med. 2014, 6, 249sr243. [Google Scholar] [CrossRef] [PubMed]
- Stern, P.; Roberts, L. The Future of Pain Research; American Association for the Advancement of Science: Washington, DC, USA, 2016; pp. 564–565. [Google Scholar]
- Reynaert, M.-L.; Dupoiron, D.; Yeramian, E.; Marsollier, L.; Brodin, P. Could mycolactone inspire new potent analgesics? perspectives and pitfalls. Toxins 2019, 11, 516. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.J.; Dutertre, S.; Vetter, I.; Christie, M.J. Conus Venom Peptide Pharmacology. Pharmacol. Rev. 2012, 64, 259–298. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.J. Conotoxins as selective inhibitors of neuronal ion channels, receptors and transporters. IUBMB Life 2004, 56, 89–93. [Google Scholar] [CrossRef]
- Monel, B.; Compton, A.A.; Bruel, T.; Amraoui, S.; Burlaud-Gaillard, J.; Roy, N.; Guivel-Benhassine, F.; Porrot, F.; Génin, P.; Meertens, L.; et al. Zika virus induces massive cytoplasmic vacuolization and paraptosis-like death in infected cells. EMBO J. 2017, 36, 1653–1668. [Google Scholar] [CrossRef]
- Heaton, N.S.; Moshkina, N.; Fenouil, R.; Gardner, T.J.; Aguirre, S.; Shah, P.S.; Zhao, N.; Manganaro, L.; Hultquist, J.F.; Noel, J.; et al. Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection. Immunity 2016, 44, 46–58. [Google Scholar] [CrossRef]
- Domenger, A.; Choisy, C.; Baron, L.; Mayau, V.; Perthame, E.; Deriano, L.; Arnulf, B.; Bories, J.; Dadaglio, G.; Demangel, C. The Sec61 translocon is a therapeutic vulnerability in multiple myeloma. EMBO Mol. Med. 2022, 14, e14740. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akolgo, G.A.; Asiedu, K.B.; Amewu, R.K. Exploring Mycolactone—The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential. Toxins 2024, 16, 528. https://doi.org/10.3390/toxins16120528
Akolgo GA, Asiedu KB, Amewu RK. Exploring Mycolactone—The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential. Toxins. 2024; 16(12):528. https://doi.org/10.3390/toxins16120528
Chicago/Turabian StyleAkolgo, Gideon Atinga, Kingsley Bampoe Asiedu, and Richard Kwamla Amewu. 2024. "Exploring Mycolactone—The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential" Toxins 16, no. 12: 528. https://doi.org/10.3390/toxins16120528
APA StyleAkolgo, G. A., Asiedu, K. B., & Amewu, R. K. (2024). Exploring Mycolactone—The Unique Causative Toxin of Buruli Ulcer: Biosynthetic, Synthetic Pathways, Biomarker for Diagnosis, and Therapeutic Potential. Toxins, 16(12), 528. https://doi.org/10.3390/toxins16120528