Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = translational glycobiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
56 pages, 4337 KiB  
Review
Glycomics in Human Diseases and Its Emerging Role in Biomarker Discovery
by Sherifdeen Onigbinde, Moyinoluwa Adeniyi, Oluwatosin Daramola, Favour Chukwubueze, Md Mostofa Al Amin Bhuiyan, Judith Nwaiwu, Tuli Bhattacharjee and Yehia Mechref
Biomedicines 2025, 13(8), 2034; https://doi.org/10.3390/biomedicines13082034 - 21 Aug 2025
Viewed by 31
Abstract
Glycosylation, the enzymatic addition of glycans to proteins and lipids, is a critical post-translational modification that influences protein folding, stability, trafficking, immune modulation, and cell signaling. The vast structural diversity of glycans arising from differences in monosaccharide composition, branching, and terminal modifications such [...] Read more.
Glycosylation, the enzymatic addition of glycans to proteins and lipids, is a critical post-translational modification that influences protein folding, stability, trafficking, immune modulation, and cell signaling. The vast structural diversity of glycans arising from differences in monosaccharide composition, branching, and terminal modifications such as sialylation, fucosylation, and sulfation underpins their functional specificity and regulatory capacity. This review provides a comprehensive overview of glycan biosynthesis, with a focus on N-glycans, O-glycans, glycosaminoglycans (GAGs), and glycolipids. It explores their essential roles in maintaining cellular homeostasis, development, and immune surveillance. In health, glycans mediate cell–cell communication, protein interactions, and immune responses. In disease, however, aberrant glycosylation is increasingly recognized as a hallmark of numerous pathological conditions, including cancer, neurodegenerative disorders, autoimmune diseases, and a wide range of infectious diseases. Glycomic alterations contribute to tumor progression, immune evasion, therapy resistance, neuroinflammation, and synaptic dysfunction. Tumor-associated carbohydrate antigens (TACAs) and disease-specific glycoforms present novel opportunities for biomarker discovery and therapeutic targeting. Moreover, glycan-mediated host–pathogen interactions are central to microbial adhesion, immune escape, and virulence. This review highlights current advances in glycomics technologies, including mass spectrometry, lectin microarrays, and glycoengineering, which have enabled the high-resolution profiling of the glycome. It also highlights the emerging potential of single-cell glycomics and multi-omics integration in precision medicine. Understanding glycome and its dynamic regulation is essential for uncovering the molecular mechanisms of disease and translating glycomic insights into innovative diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Role of Glycomics in Health and Diseases)
Show Figures

Figure 1

32 pages, 3404 KiB  
Review
Potential Targeting Mechanisms for Bone-Directed Therapies
by Betul Celik, Andrés Felipe Leal and Shunji Tomatsu
Int. J. Mol. Sci. 2024, 25(15), 8339; https://doi.org/10.3390/ijms25158339 - 30 Jul 2024
Cited by 4 | Viewed by 2919
Abstract
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, [...] Read more.
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems. Full article
Show Figures

Figure 1

22 pages, 999 KiB  
Review
Decoding Strategies to Evade Immunoregulators Galectin-1, -3, and -9 and Their Ligands as Novel Therapeutics in Cancer Immunotherapy
by Lee Seng Lau, Norhan B. B. Mohammed and Charles J. Dimitroff
Int. J. Mol. Sci. 2022, 23(24), 15554; https://doi.org/10.3390/ijms232415554 - 8 Dec 2022
Cited by 14 | Viewed by 4611
Abstract
Galectins are a family of ß-galactoside-binding proteins that play a variety of roles in normal physiology. In cancer, their expression levels are typically elevated and often associated with poor prognosis. They are known to fuel a variety of cancer progression pathways through their [...] Read more.
Galectins are a family of ß-galactoside-binding proteins that play a variety of roles in normal physiology. In cancer, their expression levels are typically elevated and often associated with poor prognosis. They are known to fuel a variety of cancer progression pathways through their glycan-binding interactions with cancer, stromal, and immune cell surfaces. Of the 15 galectins in mammals, galectin (Gal)-1, -3, and -9 are particularly notable for their critical roles in tumor immune escape. While these galectins play integral roles in promoting cancer progression, they are also instrumental in regulating the survival, differentiation, and function of anti-tumor T cells that compromise anti-tumor immunity and weaken novel immunotherapies. To this end, there has been a surge in the development of new strategies to inhibit their pro-malignancy characteristics, particularly in reversing tumor immunosuppression through galectin–glycan ligand-targeting methods. This review examines some new approaches to evading Gal-1, -3, and -9–ligand interactions to interfere with their tumor-promoting and immunoregulating activities. Whether using neutralizing antibodies, synthetic peptides, glyco-metabolic modifiers, competitive inhibitors, vaccines, gene editing, exo-glycan modification, or chimeric antigen receptor (CAR)-T cells, these methods offer new hope of synergizing their inhibitory effects with current immunotherapeutic methods and yielding highly effective, durable responses. Full article
(This article belongs to the Special Issue Molecular Drivers of Responsiveness to Cancer Immunotherapy)
Show Figures

Figure 1

19 pages, 5920 KiB  
Article
DeepNGlyPred: A Deep Neural Network-Based Approach for Human N-Linked Glycosylation Site Prediction
by Subash C. Pakhrin, Kiyoko F. Aoki-Kinoshita, Doina Caragea and Dukka B. KC
Molecules 2021, 26(23), 7314; https://doi.org/10.3390/molecules26237314 - 2 Dec 2021
Cited by 28 | Viewed by 6506
Abstract
Protein N-linked glycosylation is a post-translational modification that plays an important role in a myriad of biological processes. Computational prediction approaches serve as complementary methods for the characterization of glycosylation sites. Most of the existing predictors for N-linked glycosylation utilize the information that [...] Read more.
Protein N-linked glycosylation is a post-translational modification that plays an important role in a myriad of biological processes. Computational prediction approaches serve as complementary methods for the characterization of glycosylation sites. Most of the existing predictors for N-linked glycosylation utilize the information that the glycosylation site occurs at the N-X-[S/T] sequon, where X is any amino acid except proline. Not all N-X-[S/T] sequons are glycosylated, thus the N-X-[S/T] sequon is a necessary but not sufficient determinant for protein glycosylation. In that regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an important problem. Here, we report DeepNGlyPred a deep learning-based approach that encodes the positive and negative sequences in the human proteome dataset (extracted from N-GlycositeAtlas) using sequence-based features (gapped-dipeptide), predicted structural features, and evolutionary information. DeepNGlyPred produces SN, SP, MCC, and ACC of 88.62%, 73.92%, 0.60, and 79.41%, respectively on N-GlyDE independent test set, which is better than the compared approaches. These results demonstrate that DeepNGlyPred is a robust computational technique to predict N-Linked glycosylation sites confined to N-X-[S/T] sequon. DeepNGlyPred will be a useful resource for the glycobiology community. Full article
Show Figures

Figure 1

28 pages, 4781 KiB  
Review
Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management
by Isabel Faria-Ramos, Juliana Poças, Catarina Marques, João Santos-Antunes, Guilherme Macedo, Celso A. Reis and Ana Magalhães
Biomolecules 2021, 11(2), 136; https://doi.org/10.3390/biom11020136 - 21 Jan 2021
Cited by 27 | Viewed by 6141
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients’ management. Many mechanistic cell biology studies have demonstrated that heparan [...] Read more.
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients’ management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets. Full article
Show Figures

Graphical abstract

13 pages, 1879 KiB  
Review
Galectin-3: The Impact on the Clinical Management of Patients with Thyroid Nodules and Future Perspectives
by Armando Bartolazzi, Salvatore Sciacchitano and Calogero D’Alessandria
Int. J. Mol. Sci. 2018, 19(2), 445; https://doi.org/10.3390/ijms19020445 - 2 Feb 2018
Cited by 21 | Viewed by 6118
Abstract
Galectins (S-type lectins) are an evolutionarily-conserved family of lectin molecules, which can be expressed intracellularly and in the extracellular matrix, as well. Galectins bind β-galactose-containing glycoconjugates and are functionally active in converting glycan-related information into cell biological programs. Altered glycosylation notably occurring in [...] Read more.
Galectins (S-type lectins) are an evolutionarily-conserved family of lectin molecules, which can be expressed intracellularly and in the extracellular matrix, as well. Galectins bind β-galactose-containing glycoconjugates and are functionally active in converting glycan-related information into cell biological programs. Altered glycosylation notably occurring in cancer cells and expression of specific galectins provide, indeed, a fashionable mechanism of molecular interactions able to regulate several tumor relevant functions, among which are cell adhesion and migration, cell differentiation, gene transcription and RNA splicing, cell cycle and apoptosis. Furthermore, several galectin molecules also play a role in regulating the immune response. These functions are strongly dependent on the cell context, in which specific galectins and related glyco-ligands are expressed. Thyroid cancer likely represents the paradigmatic tumor model in which experimental studies on galectins’ glycobiology, in particular on galectin-3 expression and function, contributed greatly to the improvement of cancer diagnosis. The discovery of a restricted expression of galectin-3 in well-differentiated thyroid carcinomas (WDTC), compared to normal and benign thyroid conditions, contributed also to promoting preclinical studies aimed at exploring new strategies for imaging thyroid cancer in vivo based on galectin-3 immuno-targeting. Results derived from these recent experimental studies promise a further improvement of both thyroid cancer diagnosis and therapy in the near future. In this review, the biological role of galectin-3 expression in thyroid cancer, the validation and translation to a clinical setting of a galectin-3 test method for the preoperative characterization of thyroid nodules and a galectin-3-based immuno-positron emission tomography (immuno-PET) imaging of thyroid cancer in vivo are presented and discussed. Full article
(This article belongs to the Special Issue Galectins in Cancer and Translational Medicine)
Show Figures

Graphical abstract

Back to TopTop