Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = transcytosis and endocytosis of drugs carriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2686 KiB  
Review
Ocular Drug Delivery into the Eyes Using Drug-Releasing Soft Contact Lens
by Toshihiko Tashima
Future Pharmacol. 2024, 4(2), 336-351; https://doi.org/10.3390/futurepharmacol4020019 - 29 Apr 2024
Cited by 6 | Viewed by 3386
Abstract
The impact of visual impairment, such as blindness, on quality of life is immeasurable. However, effective ocular drug delivery into the eyes has not yet been established, primarily due to the impermeability imposed by the blood–retinal barrier (BRB) based on the tight junctions [...] Read more.
The impact of visual impairment, such as blindness, on quality of life is immeasurable. However, effective ocular drug delivery into the eyes has not yet been established, primarily due to the impermeability imposed by the blood–retinal barrier (BRB) based on the tight junctions and efflux transporters at the endothelium or the epithelium in oral or intravenous administration, as well as the dilution with tear fluid and excretion through the nasolacrimal duct in eye drop administration. Furthermore, intravitreous injections induce pain and fear in patients. Unmet medical needs persist in ocular diseases such as age-related macular degeneration and diabetic retinopathy. Therefore, innovative non-invasive administration methods should be developed. Drug-releasing soft contact lenses (DR-SCLs) affixed to the eye’s surface can continuously and locally deliver their loaded drugs to the eyes. The use of DR-SCLs is expected to greatly enhance the bioavailability and patient adherence to the drug regimen. It is known that several solute carrier (SLC) transporters are expressed in various parts of the eyes, including the cornea, the ciliary body, and the bulbar conjunctiva. Carrier-mediated transport through SLC transporters may occur in addition to passive diffusion. Moreover, nanoparticles can be loaded into DR-SCLs, offering various intelligent approaches based on modifications to induce receptor-mediated endocytosis/transcytosis or to control the loaded drug release within this delivery system. In this perspective review, I discuss the implementation and potential of DR-SCL-mediated ocular drug delivery, particularly focusing on low-molecular-weight compounds because of their fine distribution in living body, ease of handling, and ease of manufacturing. Full article
Show Figures

Figure 1

37 pages, 2527 KiB  
Review
Alterations in Cellular Processes Involving Vesicular Trafficking and Implications in Drug Delivery
by Silvia Muro
Biomimetics 2018, 3(3), 19; https://doi.org/10.3390/biomimetics3030019 - 24 Jul 2018
Cited by 30 | Viewed by 9606
Abstract
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact [...] Read more.
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications. Full article
(This article belongs to the Special Issue Selected Papers from NanoBio&Med 2017)
Show Figures

Graphical abstract

Back to TopTop