Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = traffic grooming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3726 KB  
Article
Dynamic Traffic Grooming Based on Virtualization-Plane-Aided Optimization for Elastic Optical Satellite Networks
by Mai Yang, Qi Zhang, Haipeng Yao, Xiangjun Xin, Ran Gao, Feng Tian, Yi Zhao and Fu Wang
Electronics 2024, 13(3), 610; https://doi.org/10.3390/electronics13030610 - 1 Feb 2024
Cited by 1 | Viewed by 1538
Abstract
With the increase in global wireless traffic, the use of large-scale satellite networking to provide ubiquitous access is one of the essential trends of future 6G network development. Elastic optical satellite networks (EOSNs) are widely considered a flexible solution for future satellite communication. [...] Read more.
With the increase in global wireless traffic, the use of large-scale satellite networking to provide ubiquitous access is one of the essential trends of future 6G network development. Elastic optical satellite networks (EOSNs) are widely considered a flexible solution for future satellite communication. However, with the continuous proliferation of network devices and users, the growing disparity between user demands and the limited bandwidth and capacity of the network is becoming increasingly noticeable. This has led to issues such as constrained network resource utilization and resource fragmentation. Therefore, EOSNs must efficiently address the challenge of allocating scarce bandwidth resources. Effective traffic grooming methods will be applied to EOSNs to solve the problem of bandwidth shortage. This paper proposed a dynamic traffic grooming algorithm based on virtualization-plane-aided optimization (DTG-VPO) to facilitate the bandwidth allocation for EOSNs. Firstly, the nodes of the alternative paths were graded, and the weights of the subsequent hop links were modified. Then, the path was evaluated using link weights, alternative paths were selected in the virtual and physical topologies, respectively, and a path set was constructed. Finally, a resource block evaluation parameter was designed to quantify the quality of candidate resource blocks and rank them. A series of simulations have evaluated the traffic-blocking probability and wavelength utilization under different traffic loads. The link resource was more fully utilized compared with other traffic grooming algorithms. The blocking probability can be reduced by 75%, while wavelength utilization can be improved by 8.1%. Full article
(This article belongs to the Special Issue Key Technologies of Satellite Communications and Networks)
Show Figures

Figure 1

17 pages, 2303 KB  
Article
Provision of Energy- and Wavelength-Efficient Traffic Grooming for Sparse WDM-Enabled Distributed Satellite Cluster Networks
by Cong Peng, Yuanzhi He, Di Yan, Huajun Fu and Shanghong Zhao
Photonics 2022, 9(7), 494; https://doi.org/10.3390/photonics9070494 - 14 Jul 2022
Viewed by 2149
Abstract
Sparse wavelength division multiplex (WDM) enabled distributed satellite cluster networks (DSCNs) have emerged as a promising architecture to accommodate future extensive applications. Networking of the DSCNs will face the challenges of explosively increasing traffic requests, the limited number of wavelengths, and restricted energy [...] Read more.
Sparse wavelength division multiplex (WDM) enabled distributed satellite cluster networks (DSCNs) have emerged as a promising architecture to accommodate future extensive applications. Networking of the DSCNs will face the challenges of explosively increasing traffic requests, the limited number of wavelengths, and restricted energy provisioning. To address these issues, a novel approach, the two-phase traffic grooming based on the matching algorithm (TPTG_MA), is proposed in this paper. To analyze resource utilization, energy- and wavelength- minimized models are established. After that, we develop the MA to tackle the traffic grooming problem in two phases, including the first phase for traffic aggregation and sub-wavelength assignment (TAASA) and the second phase for sub-wavelength grooming (SG). To evaluate the performance of the proposed TPTG_MA, the direct lightpath grooming (DLG) heuristic and the genetic algorithm (GA) are simulated for comparison. The results demonstrate that the TPTG_MA and DLG_GA outperform TPTG and DLG in the average wavelength utilization ratio (AWUR), the energy consumption saving (ESC), and the blocking probability. Compared with the DLG_GA, the TPTG_MA achieves at most 18% and 23% higher AWUR in the 12-node and 22-node topologies, respectively. In addition, the TPTG_MA can actualize at most 10% ECS improvement over the DLG_GA. At last, the influence of the network size, the number of wavelengths, and the number of hops are discussed. Full article
Show Figures

Graphical abstract

20 pages, 616 KB  
Article
Fragmentation-Aware Traffic Grooming with Lane Changes in Spectrally–Spatially Flexible Optical Networks
by Piotr Lechowicz, Aleksandra Knapińska and Róża Goścień
Electronics 2021, 10(12), 1502; https://doi.org/10.3390/electronics10121502 - 21 Jun 2021
Cited by 4 | Viewed by 2693
Abstract
Traffic in current networks is constantly increasing due to the growing popularity of various network services. The currently deployed backbone optical networks apply wavelength division multiplexing (WDM) techniques in single-core single-mode fibers (SMFs) to transmit the light. However, the capacity of SMFs is [...] Read more.
Traffic in current networks is constantly increasing due to the growing popularity of various network services. The currently deployed backbone optical networks apply wavelength division multiplexing (WDM) techniques in single-core single-mode fibers (SMFs) to transmit the light. However, the capacity of SMFs is limited due to physical constraints, and new technologies are required in the near future. Spectrally–spatially-flexible optical networks (SS-FONs) are proposed to provide a substantial capacity increase by exploring the spatial dimension. However, before this technology will reach maturity, various aspects need to be addressed. In particular, during traffic grooming, multiple small requests are aggregated into large-capacity optical corridors in an optical layer to increase the spectral efficiency. As the summary traffic volume is dynamically changing, it may be required to set up and tear down optical channels, which results in network fragmentation. As a consequence, in a congested network, part of the requests can be blocked due to the lack of spectrum resources. Thus, the grooming of traffic and the creation of lightpaths should be carefully designed to minimize network fragmentation. In this study, we present several fragmentation metrics and develop a fragmentation-aware traffic grooming algorithm that reduces the bandwidth blocking probability. Full article
(This article belongs to the Special Issue Telecommunication Networks)
Show Figures

Figure 1

12 pages, 293 KB  
Article
The Traffic Grooming Problem in Optical Networks with Respect to ADMs and OADMs: Complexity and Approximation
by Michele Flammini, Gianpiero Monaco, Luca Moscardelli, Mordechai Shalom and Shmuel Zaks
Algorithms 2021, 14(5), 151; https://doi.org/10.3390/a14050151 - 11 May 2021
Cited by 3 | Viewed by 2972
Abstract
All-optical networks transmit messages along lightpaths in which the signal is transmitted using the same wavelength in all the relevant links. We consider the problem of switching cost minimization in these networks. Specifically, the input to the problem under consideration is an optical [...] Read more.
All-optical networks transmit messages along lightpaths in which the signal is transmitted using the same wavelength in all the relevant links. We consider the problem of switching cost minimization in these networks. Specifically, the input to the problem under consideration is an optical network modeled by a graph G, a set of lightpaths modeled by paths on G, and an integer g termed the grooming factor. One has to assign a wavelength (modeled by a color) to every lightpath, so that every edge of the graph is used by at most g paths of the same color. A lightpath operating at some wavelength λ uses one Add/Drop multiplexer (ADM) at both endpoints and one Optical Add/Drop multiplexer (OADM) at every intermediate node, all operating at a wavelength of λ. Two lightpaths, both operating at the same wavelength λ, share the ADMs and OADMs in their common nodes. Therefore, the total switching cost due to the usage of ADMs and OADMs depends on the wavelength assignment. We consider networks of ring and path topology and a cost function that is a convex combination α·|OADMs|+(1α)|ADMs| of the number of ADMs and the number of OADMs deployed in the network. We showed that the problem of minimizing this cost function is NP-complete for every convex combination, even in a path topology network with g=2. On the positive side, we present a polynomial-time approximation algorithm for the problem. Full article
(This article belongs to the Special Issue Graph Algorithms and Network Dynamics)
Show Figures

Figure 1

Back to TopTop