Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = time-averaged pressure (TAP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1754 KB  
Article
Characterizing Hot-Water Consumption at Household and End-Use Levels Based on Smart-Meter Data
by Filippo Mazzoni, Valentina Marsili and Stefano Alvisi
Water 2025, 17(13), 1906; https://doi.org/10.3390/w17131906 - 26 Jun 2025
Viewed by 894
Abstract
Understanding the characteristics of residential hot-water consumption can be useful for developing effective water-conservation strategies in response to increasing pressure on natural resources. This study systematically investigates residential hot-water consumption through direct monitoring of over 40 domestic fixtures (belonging to six different end-use [...] Read more.
Understanding the characteristics of residential hot-water consumption can be useful for developing effective water-conservation strategies in response to increasing pressure on natural resources. This study systematically investigates residential hot-water consumption through direct monitoring of over 40 domestic fixtures (belonging to six different end-use categories) in five Italian households, recorded over a period ranging from approximately two weeks to nearly four months, and using smart meters with 5 min resolution. A multi-step analysis is applied—at both household and end-use levels, explicitly differentiating tap uses by purpose and location—to (i) quantify daily per capita hot-water consumption, (ii) calculate hot-water ratios, and (iii) assess daily profiles. The results show an average total water consumption of 106.7 L/person/day, with at least 26.1% attributed to hot water. In addition, daily profiles reveal distinct patterns across end uses: hot- and cold-water consumption at kitchen sinks are not aligned over time (with cold water peaking before meals and hot water used predominantly afterward), while bathroom taps show more synchronized use and a marked evening peak in hot-water consumption. Study findings—along with the related open-access dataset—provide a valuable benchmark based on field measurements to support in the process of water demand modeling and the development of targeted demand-management strategies. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Graphical abstract

24 pages, 14613 KB  
Article
Fundamental Characteristics of Wind Loading on Vaulted-Free Roofs
by Wei Ding, Yasushi Uematsu and Lizhi Wen
Wind 2023, 3(4), 394-417; https://doi.org/10.3390/wind3040023 - 26 Sep 2023
Cited by 2 | Viewed by 3039
Abstract
The present paper investigates the fundamental characteristics of wind loading on vaulted (cylindrical) free roofs based on a wind tunnel experiment and a computational fluid dynamics (CFD) analysis using Large Eddy Simulation (LES). In the wind tunnel experiment, wind pressures at many points, [...] Read more.
The present paper investigates the fundamental characteristics of wind loading on vaulted (cylindrical) free roofs based on a wind tunnel experiment and a computational fluid dynamics (CFD) analysis using Large Eddy Simulation (LES). In the wind tunnel experiment, wind pressures at many points, both on the top and bottom surfaces of rigid roof models, were measured in a turbulent boundary layer. The wind tunnel models, including the tubing system installed in the roof and columns, were made using a 3D printer, which made the roof thickness as small as 2 mm, whereas the span B was 150 mm and the length L ranged from 150 to 450 mm. The rise-to-span ratio f/B ranged from 0.1 to 0.4. Pressure taps were installed along the center arc and an arc near the roof edge (verge) of an instrumented model with a length-to-span ratio of L/B = 1. The value of L/B of the tested models was changed from 1 to 3 using one or two dummy models, which had the same configuration as that of the instrumented model but no pressure taps. The wind direction θ was changed from 0° (perpendicular to the eaves) to ±90° (parallel to the eaves). The CFD simulation was carried out only for limited cases, that is, f/B = 0.1 and 0.4 and θ = 0° and 45°, considering the computational time. The effects of f/B, L/B, and θ on the mean (time-averaged) and fluctuating wind pressures acting on the roofs were investigated. In particular, the flow mechanism generating large wind forces on the roof was discussed. An empirical formula was provided for the distribution of mean wind force coefficients along the center arc (Line C) at θ = 0° and 30° and along the edge arc (Line E) at θ = 40° for each f/B ratio. Note that these wind directions provided the maximum and minimum mean wind force coefficients within all wind directions for Lines C and E. Furthermore, the maximum and minimum peak wind force coefficients on the two arcs were presented. The effect of turbulence intensity of approach flow on the maximum and minimum peak wind force coefficients was investigated. The experimental results were compared with those estimated using a peak factor approach, which showed a relatively good agreement between them. The data presented here can be used to guide the design of the main wind force-resisting systems and the cladding/components of vaulted-free roofs. Full article
Show Figures

Figure 1

15 pages, 1914 KB  
Article
Experimental Study of the Droplet Deposition Characteristics on an Unmanned Aerial Vehicle Platform under Wind Tunnel Conditions
by Yuxuan Jiao, Xinyu Xue, Suming Ding, Qingqing Zhou, Wei Kong, Yong Tian and Xiaoming Liu
Agronomy 2022, 12(12), 3066; https://doi.org/10.3390/agronomy12123066 - 3 Dec 2022
Cited by 7 | Viewed by 1974
Abstract
Unmanned aerial vehicles (UAVs) are widely used in field pesticide spray operations due to their wide applicability and high operational efficiency. However, their high spray height and fine pesticide droplets lead to a greater risk of drift and likely different droplet deposition outcomes [...] Read more.
Unmanned aerial vehicles (UAVs) are widely used in field pesticide spray operations due to their wide applicability and high operational efficiency. However, their high spray height and fine pesticide droplets lead to a greater risk of drift and likely different droplet deposition outcomes compared to the expectation. So far, most of the previous studies have used direct field methods on UAVs’ droplet deposition characteristics and there have been few carried out in wind tunnels. Thus, in this paper, a simulated UAV platform equipped with TeeJet 80-015 VP fan nozzles was utilized to study the droplet deposition characteristics in a wind tunnel. The droplet deposition amount and drift potential reduction percentage (DPRP) under different spray parameters were obtained. The results showed that when the rotor was open, the deposition amount in the target area increased by 2.6 times and the drift deposition amount decreased by 7.3 times when spraying tap water at 3 m/s wind speed and 3 bar pressure. Faster wind speeds led to greater drift deposition amounts and a lower DPRP, but higher pressures resulted in greater drift deposition amounts and a larger DPRP. The 30 g/L PEG-20000 solution has a higher droplet size and smaller relative droplet spectrum width RS, resulting in the deposition amount in the target area increasing by 9.13% on average and the drift amount decreasing by 24.7% on average, and it can be used as an anti-drift additive when needed. The research results can provide reference and technical support for UAV wind tunnel tests and field operation specifications. Full article
Show Figures

Figure 1

24 pages, 33188 KB  
Article
Effects of Pulsatile Flow Rate and Shunt Ratio in Bifurcated Distal Arteries on Hemodynamic Characteristics Involved in Two Patient-Specific Internal Carotid Artery Sidewall Aneurysms: A Numerical Study
by Hang Yi, Mark Johnson, Luke C. Bramlage, Bryan Ludwig and Zifeng Yang
Bioengineering 2022, 9(7), 326; https://doi.org/10.3390/bioengineering9070326 - 18 Jul 2022
Cited by 10 | Viewed by 2889
Abstract
The pulsatile flow rate (PFR) in the cerebral artery system and shunt ratios in bifurcated arteries are two patient-specific parameters that may affect the hemodynamic characteristics in the pathobiology of cerebral aneurysms, which needs to be identified comprehensively. Accordingly, a systematic study was [...] Read more.
The pulsatile flow rate (PFR) in the cerebral artery system and shunt ratios in bifurcated arteries are two patient-specific parameters that may affect the hemodynamic characteristics in the pathobiology of cerebral aneurysms, which needs to be identified comprehensively. Accordingly, a systematic study was employed to study the effects of pulsatile flow rate (i.e., PFR−I, PFR−II, and PFR−III) and shunt ratio (i.e., 75:25 and 64:36) in bifurcated distal arteries, and transient cardiac pulsatile waveform on hemodynamic patterns in two internal carotid artery sidewall aneurysm models using computational fluid dynamics (CFD) modeling. Numerical results indicate that larger PFRs can cause higher wall shear stress (WSS) in some local regions of the aneurysmal dome that may increase the probability of small/secondary aneurysm generation than under smaller PFRs. The low WSS and relatively high oscillatory shear index (OSI) could appear under a smaller PFR, increasing the potential risk of aneurysmal sac growth and rupture. However, the variances in PFRs and bifurcated shunt ratios have rare impacts on the time-average pressure (TAP) distributions on the aneurysmal sac, although a higher PFR can contribute more to the pressure increase in the ICASA−1 dome due to the relatively stronger impingement by the redirected bloodstream than in ICASA−2. CFD simulations also show that the variances of shunt ratios in bifurcated distal arteries have rare impacts on the hemodynamic characteristics in the sacs, mainly because the bifurcated location is not close enough to the sac in present models. Furthermore, it has been found that the vortex location plays a major role in the temporal and spatial distribution of the WSS on the luminal wall, varying significantly with the cardiac period. Full article
(This article belongs to the Special Issue Recent Insights into the Cellular Biology of Vascular Diseases)
Show Figures

Figure 1

18 pages, 6659 KB  
Article
Wind Forces and Flow Patterns of Three Tandem Prisms with a Small Height–Width Ratio
by Kun Du and Bo Chen
Appl. Sci. 2022, 12(4), 2254; https://doi.org/10.3390/app12042254 - 21 Feb 2022
Cited by 2 | Viewed by 2072
Abstract
Wind tunnel tests and large eddy simulations were conducted to investigate the dependency of wind forces and flow patterns on the spacing (S) for three tandem prisms with a small height–width ratio H/W = 0.4. At the spacing ratio S/W = [...] Read more.
Wind tunnel tests and large eddy simulations were conducted to investigate the dependency of wind forces and flow patterns on the spacing (S) for three tandem prisms with a small height–width ratio H/W = 0.4. At the spacing ratio S/W = 0.7, mean and root-mean-square drag of downstream prisms have large local peaks, and their magnitudes are larger than those at adjacent spacing ratios; these should be noted to ensure the safety and economy of the wind-resistant design of prism-like low-rise buildings. These phenomena are different from that of a small group of tandem prisms with a large H/W and a large group of tandem prisms with a small H/W. At S/W = 0.7, tap pressure time histories of downstream prisms are non-stationary with abrupt changes, but wind force time histories of downstream prisms are stationary, unlike a small group of tandem prisms with a large H/W, where both tap pressure and win d force time histories are non-stationary. Above phenomena at S/W = 0.7 are attributed to a special asymmetric time-averaged wake regime, which has two modes with symmetric wake flow directions and they irregularly switch. The duration of each mode is ruleless. This special wake regime was not observed in previous studies on tandem prisms. Full article
Show Figures

Figure 1

Back to TopTop