Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = time domain transmissometry (TDT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3138 KiB  
Article
Low-Error Soil Moisture Sensor Employing Spatial Frequency Domain Transmissometry
by Tadaomi Saito, Takahiro Oishi, Mitsuhiro Inoue, Sachio Iida, Norihito Mihota, Atsushi Yamada, Kohei Shimizu, Satoru Inumochi and Koji Inosako
Sensors 2022, 22(22), 8658; https://doi.org/10.3390/s22228658 - 9 Nov 2022
Cited by 9 | Viewed by 5150
Abstract
A new type of soil moisture sensor using spatial frequency domain transmissometry (SFDT) was evaluated. This sensor transmits and receives ultrawideband (1 to 6 GHz) radio waves between two separated antennas and measures the propagation delay time in the soil related to the [...] Read more.
A new type of soil moisture sensor using spatial frequency domain transmissometry (SFDT) was evaluated. This sensor transmits and receives ultrawideband (1 to 6 GHz) radio waves between two separated antennas and measures the propagation delay time in the soil related to the dielectric constant. This method is expected to be less affected by air gaps between the probes and the soil, as well as being less affected by soil electrical conductivity (EC), than typical commercial sensors. The relationship between output and volumetric water content (θ), and the effects of air gaps and EC were evaluated through experiments using sand samples and the prototype SFDT sensor. The output of the SFDT sensor increased linearly with θ and was not affected by even a high salt concentration for irrigation water, such that the EC of the pore water was 9.2 dS·m−1. The SFDT sensor was almost unaffected by polyethylene tapes wrapped around the sensor to simulate air gaps, whereas a commercially available capacitance sensor significantly underestimated θ. Theoretical models of the SFDT sensor were also developed for the calibration equation and the air gaps. The calculation results agreed well with the experimental results, indicating that analytical approaches are possible for the evaluation of the SFDT sensor. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

15 pages, 272 KiB  
Article
Soil Moisture Sensing via Swept Frequency Based Microwave Sensors
by Mathew G. Pelletier, Sundar Karthikeyan, Timothy R. Green, Robert C. Schwartz, John D. Wanjura and Greg A. Holt
Sensors 2012, 12(1), 753-767; https://doi.org/10.3390/s120100753 - 11 Jan 2012
Cited by 18 | Viewed by 8757
Abstract
There is a need for low-cost, high-accuracy measurement of water content in various materials. This study assesses the performance of a new microwave swept frequency domain instrument (SFI) that has promise to provide a low-cost, high-accuracy alternative to the traditional and more expensive [...] Read more.
There is a need for low-cost, high-accuracy measurement of water content in various materials. This study assesses the performance of a new microwave swept frequency domain instrument (SFI) that has promise to provide a low-cost, high-accuracy alternative to the traditional and more expensive time domain reflectometry (TDR). The technique obtains permittivity measurements of soils in the frequency domain utilizing a through transmission configuration, transmissometry, which provides a frequency domain transmissometry measurement (FDT). The measurement is comparable to time domain transmissometry (TDT) with the added advantage of also being able to separately quantify the real and imaginary portions of the complex permittivity so that the measured bulk permittivity is more accurate that the measurement TDR provides where the apparent permittivity is impacted by the signal loss, which can be significant in heavier soils. The experimental SFI was compared with a high-end 12 GHz TDR/TDT system across a range of soils at varying soil water contents and densities. As propagation delay is the fundamental measurement of interest to the well-established TDR or TDT technique; the first set of tests utilized precision propagation delay lines to test the accuracy of the SFI instrument’s ability to resolve propagation delays across the expected range of delays that a soil probe would present when subjected to the expected range of soil types and soil moisture typical to an agronomic cropping system. The results of the precision-delay line testing suggests the instrument is capable of predicting propagation delays with a RMSE of +/−105 ps across the range of delays ranging from 0 to 12,000 ps with a coefficient of determination of r2 = 0.998. The second phase of tests noted the rich history of TDR for prediction of soil moisture and leveraged this history by utilizing TDT measured with a high-end Hewlett Packard TDR/TDT instrument to directly benchmark the SFI instrument over a range of soil types, at varying levels of moisture. This testing protocol was developed to provide the best possible comparison between SFI to TDT than would otherwise be possible by using soil moisture as the bench mark, due to variations in soil density between soil water content levels which are known to impact the calibration between TDR’s estimate of soil water content from the measured propagation delay which is converted to an apparent permittivity measurement. This experimental decision, to compare propagation delay of TDT to FDT, effectively removes the errors due to variations in packing density from the evaluation and provides a direct comparison between the SFI instrument and the time domain technique of TDT. The tests utilized three soils (a sand, an Acuff loam and an Olton clay-loam) that were packed to varying bulk densities and prepared to provide a range of water contents and electrical conductivities by which to compare the performance of the SFI technology to TDT measurements of propagation delay. For each sample tested, the SFI instrument and the TDT both performed the measurements on the exact same probe, thereby both instruments were measuring the exact same soil/soil-probe response to ensure the most accurate means to compare the SFI instrument to a high-end TDT instrument. Test results provided an estimated instrumental accuracy for the SFI of +/−0.98% of full scale, RMSE basis, for the precision delay lines and +/−1.32% when the SFI was evaluated on loam and clay loam soils, in comparison to TDT as the bench-mark. Results from both experiments provide evidence that the low-cost SFI approach is a viable alternative to conventional TDR/TDT for high accuracy applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop