Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = tick saliva peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3276 KiB  
Article
The Tick Saliva Peptide HIDfsin2 TLR4-Dependently Inhibits the Tick-Borne Severe Fever with Thrombocytopenia Syndrome Virus in Mouse Macrophages
by Luyao Wang, Yishuo Liu, Rui Pang, Yiyuan Guo, Yingying Ren, Yingliang Wu and Zhijian Cao
Antibiotics 2024, 13(5), 449; https://doi.org/10.3390/antibiotics13050449 - 15 May 2024
Cited by 2 | Viewed by 1970
Abstract
Ticks transmit a variety of pathogens to their hosts by feeding on blood. The interactions and struggle between tick pathogens and hosts have evolved bilaterally. The components of tick saliva can directly or indirectly trigger host biological responses in a manner that promotes [...] Read more.
Ticks transmit a variety of pathogens to their hosts by feeding on blood. The interactions and struggle between tick pathogens and hosts have evolved bilaterally. The components of tick saliva can directly or indirectly trigger host biological responses in a manner that promotes pathogen transmission; however, host cells continuously develop strategies to combat pathogen infection and transmission. Moreover, it is still unknown how host cells develop their defense strategies against tick-borne viruses during tick sucking. Here, we found that the tick saliva peptide HIDfsin2 enhanced the antiviral innate immunity of mouse macrophages by activating the Toll-like receptor 4 (TLR4) signaling pathway, thereby restricting tick-borne severe fever with thrombocytopenia syndrome virus (SFTSV) replication. HIDfsin2 was identified to interact with lipopolysaccharide (LPS), a ligand of TLR4, and then depolymerize LPS micelles into smaller particles, effectively enhancing the activation of the nuclear factor kappa-B (NF-κB) and type I interferon (IFN-I) signaling pathways, which are downstream of TLR4. Expectedly, TLR4 knockout completely eliminated the promotion effect of HIDfsin2 on NF-κB and type I interferon activation. Moreover, HIDfsin2 enhanced SFTSV replication in TLR4-knockout mouse macrophages, which is consistent with our recent report that HIDfsin2 hijacked p38 mitogen-activated protein kinase (MAPK) to promote the replication of tick-borne SFTSV in A549 and Huh7 cells (human cell lines) with low expression of TLR4. Together, these results provide new insights into the innate immune mechanism of host cells following tick bites. Our study also shows a rare molecular event relating to the mutual antagonism between tick-borne SFTSV and host cells mediated by the tick saliva peptide HIDfsin2 at the tick–host–virus interface. Full article
(This article belongs to the Special Issue Peptide Antibiotics from Microbes and Venomous Animals, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 1001 KiB  
Article
Identification, Baculoviral Expression, and Biochemical Characterization of a Novel Cholinesterase of Amblyomma americanum (Acari: Ixodidae)
by Kevin B. Temeyer, Kristie G. Schlechte, Aaron D. Gross and Kimberly H. Lohmeyer
Int. J. Mol. Sci. 2023, 24(9), 7681; https://doi.org/10.3390/ijms24097681 - 22 Apr 2023
Viewed by 2156
Abstract
A cDNA encoding a novel cholinesterase (ChE, EC 3.1.1.8) from the larvae of Amblyomma americanum (Linnaeus) was identified, sequenced, and expressed in Sf21 insect cell culture using the baculoviral expression vector pBlueBac4.5/V5-His. The open reading frame (1746 nucleotides) of the cDNA encoded 581 [...] Read more.
A cDNA encoding a novel cholinesterase (ChE, EC 3.1.1.8) from the larvae of Amblyomma americanum (Linnaeus) was identified, sequenced, and expressed in Sf21 insect cell culture using the baculoviral expression vector pBlueBac4.5/V5-His. The open reading frame (1746 nucleotides) of the cDNA encoded 581 amino acids beginning with the initiation codon. Identical cDNA sequences were amplified from the total RNA of adult tick synganglion and salivary gland, strongly suggesting expression in both tick synganglion and saliva. The recombinant enzyme (rAaChE1) was highly sensitive to eserine and BW284c51, relatively insensitive to tetraisopropyl pyrophosphoramide (iso-OMPA) and ethopropazine, and hydrolyzed butyrylthiocholine (BuTCh) 5.7 times as fast as acetylthiocholine (ATCh) at 120 µM, with calculated KM values for acetylthiocholine (ATCh) and butyrylthiocholine of 6.39 µM and 14.18 µM, respectively. The recombinant enzyme was highly sensitive to inhibition by malaoxon, paraoxon, and coroxon in either substrate. Western blots using polyclonal rabbit antibody produced by immunization with a peptide specific for rAaChE1 exhibited reactivity in salivary and synganglial extract blots, indicating the presence of AaChE1 antigenic protein. Total cholinesterase activities of synganglial or salivary gland extracts from adult ticks exhibited biochemical properties very different from the expressed rAaACh1 enzyme, evidencing the substantial presence of additional cholinesterase activities in tick synganglion and saliva. The biological function of AaChE1 remains to be elucidated, but its presence in tick saliva is suggestive of functions in hydrolysis of cholinergic substrates present in the large blood mean and potential involvement in the modulation of host immune responses to tick feeding and introduced pathogens. Full article
(This article belongs to the Special Issue Human Animal Tick-Borne Diseases)
Show Figures

Figure 1

21 pages, 678 KiB  
Article
A Deeper Insight into the Tick Salivary Protein Families under the Light of Alphafold2 and Dali: Introducing the TickSialoFam 2.0 Database
by Ben J. Mans, John F. Andersen and José M. C. Ribeiro
Int. J. Mol. Sci. 2022, 23(24), 15613; https://doi.org/10.3390/ijms232415613 - 9 Dec 2022
Cited by 9 | Viewed by 2447
Abstract
Hard ticks feed for several days or weeks on their hosts and their saliva contains thousands of polypeptides belonging to dozens of families, as identified by salivary transcriptomes. Comparison of the coding sequences to protein databases helps to identify putative secreted proteins and [...] Read more.
Hard ticks feed for several days or weeks on their hosts and their saliva contains thousands of polypeptides belonging to dozens of families, as identified by salivary transcriptomes. Comparison of the coding sequences to protein databases helps to identify putative secreted proteins and their potential functions, directing and focusing future studies, usually done with recombinant proteins that are tested in different bioassays. However, many families of putative secreted peptides have a unique character, not providing significant matches to known sequences. The availability of the Alphafold2 program, which provides in silico predictions of the 3D polypeptide structure, coupled with the Dali program which uses the atomic coordinates of a structural model to search the Protein Data Bank (PDB) allows another layer of investigation to annotate and ascribe a functional role to proteins having so far being characterized as “unique”. In this study, we analyzed the classification of tick salivary proteins under the light of the Alphafold2/Dali programs, detecting novel protein families and gaining new insights relating the structure and function of tick salivary proteins. Full article
(This article belongs to the Special Issue Molecular Biology of Disease Vectors)
Show Figures

Figure 1

17 pages, 1890 KiB  
Review
The Brilliance of Borrelia: Mechanisms of Host Immune Evasion by Lyme Disease-Causing Spirochetes
by Cassidy Anderson and Catherine A. Brissette
Pathogens 2021, 10(3), 281; https://doi.org/10.3390/pathogens10030281 - 2 Mar 2021
Cited by 40 | Viewed by 10408
Abstract
Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune [...] Read more.
Lyme disease (LD) has become the most common vector-borne illness in the northern hemisphere. The causative agent, Borrelia burgdorferi sensu lato, is capable of establishing a persistent infection within the host. This is despite the activation of both the innate and adaptive immune responses. B. burgdorferi utilizes several immune evasion tactics ranging from the regulation of surface proteins, tick saliva, antimicrobial peptide resistance, and the disabling of the germinal center. This review aims to cover the various methods by which B. burgdorferi evades detection and destruction by the host immune response, examining both the innate and adaptive responses. By understanding the methods employed by B. burgdorferi to evade the host immune response, we gain a deeper knowledge of B. burgdorferi pathogenesis and Lyme disease, and gain insight into how to create novel, effective treatments. Full article
Show Figures

Figure 1

Back to TopTop