Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = thioflavin T (ThT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2361 KiB  
Communication
Inhibitory Effects of 3-(4-Hydroxy-3-methoxyphenyl) Propionic Acid on Amyloid β-Peptide Aggregation In Vitro
by Makoto Mori, Hiroto Nakano, Sadao Hikishima, Jota Minamikawa, Daiki Muramatsu, Yasuhiro Sakashita, Tokuhei Ikeda, Moeko Noguchi-Shinohara and Kenjiro Ono
Biomedicines 2025, 13(7), 1649; https://doi.org/10.3390/biomedicines13071649 - 6 Jul 2025
Viewed by 425
Abstract
Objectives: The compound 3-(4-Hydroxy-3-methoxyphenyl) propionic acid (HMPA) is a terminal metabolite derived from polyphenol compounds. It has been studied for its potential to support brain health indirectly through its anti-oxidant effects and ability to enhance the gut environment; however, its role in [...] Read more.
Objectives: The compound 3-(4-Hydroxy-3-methoxyphenyl) propionic acid (HMPA) is a terminal metabolite derived from polyphenol compounds. It has been studied for its potential to support brain health indirectly through its anti-oxidant effects and ability to enhance the gut environment; however, its role in dementia pathogenesis is unclear. Therefore, the aim of this study was to evaluate how HMPA inhibits Aβ42 aggregation in vitro. Methods: We examined the inhibitory effects of HMPA on amyloid-β protein (Aβ) aggregation using a thioflavin T (ThT) assay and electron microscopy (EM). Results: ThT assays demonstrated that HMPA inhibited both the nucleation and elongation phases of Aβ aggregation. Additionally, EM of low-molecular-weight (LMW) Aβ42 in the presence of HMPA demonstrated shorter fibrils compared to those formed without HMPA. The EC50 of HMPA in LMW Aβ42 was 5–6 mM. Conclusions: These findings indicate that, similar to several polyphenol compounds such as myricetin and rosmarinic acid, HMPA may inhibit Aβ pathogenesis, although it requires a fairly high concentration in vitro. These findings suggest the potential of HMPA as a lead compound for modulating Aβ-related neurodegeneration. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

20 pages, 1793 KiB  
Article
Anti-Amyloid Aggregation Effects of Gobaishi (Galla chinensis) and Its Active Constituents
by Sharmin Akter, Takayuki Tohge, Sahithya Hulimane Ananda, Masahiro Kuragano, Kiyotaka Tokuraku and Koji Uwai
Molecules 2025, 30(13), 2720; https://doi.org/10.3390/molecules30132720 - 24 Jun 2025
Viewed by 474
Abstract
Alzheimer′s disease (AD) is a chronic neurodegenerative disorder that leads to memory loss and changes in mental and behavioral functions in elderly individuals. A major pathological feature of AD is the aggregation of amyloid-beta (Aβ) peptides, along with oxidative stress, inducing neurocellular apoptosis [...] Read more.
Alzheimer′s disease (AD) is a chronic neurodegenerative disorder that leads to memory loss and changes in mental and behavioral functions in elderly individuals. A major pathological feature of AD is the aggregation of amyloid-beta (Aβ) peptides, along with oxidative stress, inducing neurocellular apoptosis in the brain. Gobaishi (Galla chinensis), a traditional herbal medicine, has gained considerable attention for its constituents and potent therapeutic properties, particularly its strong inhibitory activity against Aβ fibril formation. In this study, we investigated the anti-Aβ aggregation effects of Gobaishi and its active constituents. We isolated two compounds by employing Thioflavin T (ThT) assay-guided fractionation, which were identified through various spectroscopic methods as pentagalloyl glucose (PGG) and methyl gallate (MG). Evaluation of their anti-Aβ aggregation effects revealed that PGG and MG contribute 1.5% and 0.7% of the activity of Gobaishi, respectively. In addition, PGG demonstrated significantly stronger DPPH radical scavenging activity (EC50 = 1.16 µM) compared to MG (EC50 = 6.44 µM). At a concentration of 30 µM, PGG significantly reduced the Aβ-induced cytotoxicity in SH-SY5Y cell lines compared to MG. Based on these findings, both Gobaishi and its active compound PGG are proposed as promising candidates for further investigation as potent anti-amyloidogenic agents in AD management. Full article
Show Figures

Figure 1

11 pages, 1759 KiB  
Article
A Label-Free CRISPR/Cas12a-G4 Biosensor Integrated with FTA Card for Detection of Foodborne Pathogens
by Anqi Chao, Qinqin Hu and Kun Yin
Biosensors 2025, 15(4), 230; https://doi.org/10.3390/bios15040230 - 5 Apr 2025
Cited by 1 | Viewed by 739
Abstract
CRISPR/Cas-based diagnostics offer unparalleled specificity, but their reliance on fluorescently labeled probes and complex nucleic acid extraction limits field applicability. To tackle this problem, we have developed a label-free, equipment-free platform integrating FTA card-based extraction, CRISPR/Cas12a, and pre-folded G-quadruplex (G4)–Thioflavin T (ThT) signal [...] Read more.
CRISPR/Cas-based diagnostics offer unparalleled specificity, but their reliance on fluorescently labeled probes and complex nucleic acid extraction limits field applicability. To tackle this problem, we have developed a label-free, equipment-free platform integrating FTA card-based extraction, CRISPR/Cas12a, and pre-folded G-quadruplex (G4)–Thioflavin T (ThT) signal reporter. This system eliminates costly fluorescent labeling by leveraging G4-ThT structural binding for visible fluorescence output, while FTA cards streamline nucleic acid isolation without centrifugation. Achieving a limit of detection (LOD) to 101 CFU/mL for Escherichia coli O157:H7 in spiked food samples, the platform demonstrated 100% concordance with qPCR and standard fluorescent probe-based CRISPR/Cas12a system. Its simplicity, minimal equipment (portable heating/imaging), and cost-effectiveness make it a revolutionary tool for detecting foodborne pathogens in resource-limited environments. Full article
Show Figures

Figure 1

12 pages, 4942 KiB  
Article
Intermolecular Structure Conversion-Based G4-TDF Nanostructures Functionalized μPADs for Fluorescent Determination of Potassium Ion in Serum
by Mengqi Wang, Xiuli Fu, Yixuan Liu, Zhiyang Zhang, Chenyu Jiang and Dean Song
Biosensors 2025, 15(4), 223; https://doi.org/10.3390/bios15040223 - 31 Mar 2025
Viewed by 436
Abstract
Herein, we proposed a versatile G-quadruplex (G4)-tetrahedral DNA framework (G4-TDF) nanostructure functionalized origami microfluidic paper-based device (μPADs) for fluorescence detection of K+ by lighting up thioflavin T (ThT). In this work, TDF provided robust structural support for G-rich sequence in well-defined orientation [...] Read more.
Herein, we proposed a versatile G-quadruplex (G4)-tetrahedral DNA framework (G4-TDF) nanostructure functionalized origami microfluidic paper-based device (μPADs) for fluorescence detection of K+ by lighting up thioflavin T (ThT). In this work, TDF provided robust structural support for G-rich sequence in well-defined orientation and spacing to ensure high recognition efficiency, enabling sensitive fluorescence sensing on origami μPAD. After introducing ThT, the G-rich sequences extended from TDF vertices formed a parallel G4 structure, showing weak fluorescence signal output. Upon the presence of target K+, this parallel G4 structure transitioned to antiparallel G4 structure, leading to a significantly increase in fluorescence signal of ThT. Benefiting from the outstanding fluorescence enhancement characteristic of the G4 structure for ThT and excellent specificity of the G4 structure to K+ plus satisfactory recognition efficiency with the aid of TDF, this origami paper-based fluorescence sensing strategy exhibited an impressive detection limit as low as 0.2 mM with a wide range of 0.5–5.5 mM. This innovative G4-TDF fluorescence sensing was applied for the first time on μPAD, providing a simple, effective, and rapid method for K+ detection in human serum with significant potential for clinical diagnostics. Full article
Show Figures

Figure 1

17 pages, 3202 KiB  
Article
Ruthenium(II)–Arene Complexes with a 2,2′-Bipyridine Ligand as Anti-Aβ Agents
by Ryan M. Hacker, Jacob J. Smith, David C. Platt, William W. Brennessel, Marjorie A. Jones and Michael I. Webb
Biomolecules 2025, 15(4), 475; https://doi.org/10.3390/biom15040475 - 25 Mar 2025
Viewed by 1088
Abstract
Agents that target the amyloid-β (Aβ) peptide associated with Alzheimer’s disease have seen renewed interest following the clinical success of antibody therapeutics. Small molecules, specifically metal-based complexes, are excellent candidates for advancement, given their relative ease of preparation and modular scaffold. Herein, several [...] Read more.
Agents that target the amyloid-β (Aβ) peptide associated with Alzheimer’s disease have seen renewed interest following the clinical success of antibody therapeutics. Small molecules, specifically metal-based complexes, are excellent candidates for advancement, given their relative ease of preparation and modular scaffold. Herein, several ruthenium–arene complexes containing 2,2-bipyridine (bpy) ligands were prepared and evaluated for their respective ability to modulate the aggregation of Aβ. This was carried out using the three sequential methods of thioflavin T (ThT) fluorescence, dynamic ligand scattering (DLS), and transmission electron microscopy (TEM). Overall, it was observed that RuBA, the complex with a 4,4-diamino-2,2-bipyridine ligand, had the greatest impact on Aβ aggregation. Further evaluation of the complexes was performed to determine their relative affinity for serum albumin and biocompatibility towards two neuronal cell lines. Ultimately, RuBA outperformed the other Ru complexes, where the structure–activity relationship codified the importance of the amino groups on the bpy for anti-Aβ activity. Full article
(This article belongs to the Special Issue Amyloid-Beta and Alzheimer’s Disease)
Show Figures

Graphical abstract

13 pages, 1771 KiB  
Article
Tau Oligomers Resist Phase Separation
by Lathan Lucas, Phoebe S. Tsoi, Josephine C. Ferreon and Allan Chris M. Ferreon
Biomolecules 2025, 15(3), 336; https://doi.org/10.3390/biom15030336 - 26 Feb 2025
Cited by 1 | Viewed by 1095
Abstract
Tau is a microtubule-associated protein that undergoes liquid–liquid phase separation (LLPS) to form condensates under physiological conditions, facilitating microtubule stabilization and intracellular transport. LLPS has also been implicated in pathological Tau aggregation, which contributes to tauopathies such as Alzheimer’s disease. While LLPS is [...] Read more.
Tau is a microtubule-associated protein that undergoes liquid–liquid phase separation (LLPS) to form condensates under physiological conditions, facilitating microtubule stabilization and intracellular transport. LLPS has also been implicated in pathological Tau aggregation, which contributes to tauopathies such as Alzheimer’s disease. While LLPS is known to promote Tau aggregation, the relationship between Tau’s structural states and its phase separation behavior remains poorly defined. Here, we examine how oligomerization modulates Tau LLPS and uncover key distinctions between monomeric, oligomeric, and amyloidogenic Tau species. Using dynamic light scattering and fluorescence microscopy, we monitored oligomer formation over time and assessed oligomeric Tau’s ability to undergo LLPS. We found that Tau monomers readily phase separate and form condensates. As oligomerization progresses, Tau’s propensity to undergo LLPS diminishes, with oligomers still being able to phase separate, albeit with reduced efficiency. Interestingly, oligomeric Tau is recruited into condensates formed with 0-day-aged Tau, with this recruitment depending on the oligomer state of maturation. Early-stage, Thioflavin T (ThT)-negative oligomers co-localize with 0-day-aged Tau condensates, whereas ThT-positive oligomers resist condensate recruitment entirely. This study highlights a dynamic interplay between Tau LLPS and aggregation, providing insight into how Tau’s structural and oligomeric states influence its pathological and functional roles. These findings underscore the need to further explore LLPS as a likely modulator of Tau pathogenesis and distinct pathogenic oligomers as viable therapeutic targets in tauopathies. Full article
(This article belongs to the Collection Feature Papers in 'Biomacromolecules: Proteins')
Show Figures

Figure 1

21 pages, 5103 KiB  
Article
Novel Poly-Arginine Peptide R18D Reduces α-Synuclein Aggregation and Uptake of α-Synuclein Seeds in Cortical Neurons
by Emma C. Robinson, Anastazja M. Gorecki, Samuel R. Pesce, Vaishali Bagda, Ryan S. Anderton and Bruno P. Meloni
Biomedicines 2025, 13(1), 122; https://doi.org/10.3390/biomedicines13010122 - 7 Jan 2025
Viewed by 1194
Abstract
Background/Objectives: The role of α-synuclein (α-syn) pathology in Parkinson’s disease (PD) is well established; however, effective therapies remain elusive. Two mechanisms central to PD neurodegeneration are the intracellular aggregation of misfolded α-syn and the uptake of α-syn aggregates into neurons. Cationic arginine-rich peptides [...] Read more.
Background/Objectives: The role of α-synuclein (α-syn) pathology in Parkinson’s disease (PD) is well established; however, effective therapies remain elusive. Two mechanisms central to PD neurodegeneration are the intracellular aggregation of misfolded α-syn and the uptake of α-syn aggregates into neurons. Cationic arginine-rich peptides (CARPs) are an emerging class of molecule with multiple neuroprotective mechanisms of action, including protein stabilisation. This study characterised both intracellular α-syn aggregation and α-syn uptake in cortical neurons in vitro. Thereafter, this study examined the therapeutic potential of the neuroprotective CARP, R18D (18-mer of D-arginine), to prevent the aforementioned PD pathogenic processes through a cell-free thioflavin-T (ThT) assay and in cortical neurons. Methods: To induce intracellular α-syn aggregation, rat primary cortical neurons were exposed to α-syn seed (0.14 μM) for 2 h to allow uptake of the protein, followed by R18D treatment (0.0625, 0.125, 0.25, 0.5 μM), and a subsequent measurement of α-syn aggregates 48 h later using a homogenous time-resolved fluorescence (HTRF) assay. To assess neuronal uptake, α-syn seeds were covalently labelled with an Alexa-Fluor 488 fluorescent tag, pre-incubated with R18D (0.125, 0.25, 0.5 μM), and then exposed to cortical neurons for 24 h and assessed via confocal microscopy. Results: It was demonstrated that R18D significantly reduced both intracellular α-syn aggregation and α-syn seed uptake in neurons by 37.8% and 77.7%, respectively. Also, R18D reduced the aggregation of α-syn monomers in the cell-free assay. Conclusions: These findings highlight the therapeutic potential of R18D to inhibit key α-syn pathological processes and PD progression. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

13 pages, 3856 KiB  
Article
Inhibition of Aβ Aggregation by Cholesterol-End-Modified PEG Vesicles and Micelles
by Shota Watanabe, Motoki Ueda and Shoichiro Asayama
Pharmaceutics 2025, 17(1), 1; https://doi.org/10.3390/pharmaceutics17010001 - 24 Dec 2024
Cited by 2 | Viewed by 1296
Abstract
Background/Objectives: This study aimed to design and evaluate Chol-PEG2000 micelles and Chol-PEG500 vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer’s disease (AD). Methods: The physical properties of Chol-PEG assemblies [...] Read more.
Background/Objectives: This study aimed to design and evaluate Chol-PEG2000 micelles and Chol-PEG500 vesicles as drug delivery system (DDS) carriers and inhibitors of amyloid-β (Aβ) aggregation, a key factor in Alzheimer’s disease (AD). Methods: The physical properties of Chol-PEG assemblies were characterized using dynamic light scattering (DLS), electrophoretic light scattering (ELS), and transmission electron microscopy (TEM). Inhibitory effects on Aβ aggregation were assessed via thioflavin T (ThT) assay, circular dichroism (CD) spectroscopy, and native polyacrylamide gel electrophoresis (native-PAGE). Results: Chol-PEG2000 micelles and Chol-PEG500 vesicles were found to exhibit diameters of 20–30 nm and 70–80 nm, respectively, with neutral surface charges and those physical properties indicated the high affinity for Aβ. At a 10-fold molar ratio, thioflavin T (ThT) assay revealed that Chol-PEG2000 delayed Aβ fibril elongation by 20 hours, while Chol-PEG500 delayed it by 40 hours against Aβ peptide. At a 50-fold molar ratio, both Chol-PEG2000 and Chol-PEG500 significantly inhibited Aβ aggregation, as indicated by minimal fluorescence intensity increases over 48 hours. CD spectroscopy indicated that Aβ maintained its random coil structure in the presence of Chol-PEG assemblies at a 50-fold molar ratio. Native-PAGE analysis demonstrated a retardation in Aβ migration immediately after mixing with Chol-PEG assemblies, suggesting complex formation. However, this retardation disappeared within 5 min, implying rapid dissociation of the complexes. Conclusions: This study demonstrated that Chol-PEG500 vesicles more effectively inhibit Aβ aggregation than Chol-PEG2000 micelles. Chol-PEG assemblies perform as DDS carriers to be capable of inhibiting Aβ aggregation. Chol-PEG assemblies can deliver additional therapeutics targeting other aspects of AD pathology. This dual-function platform shows promise as both a DDS carrier and a therapeutic agent, potentially contributing to a fundamental cure for AD. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

16 pages, 4662 KiB  
Article
Modulating Amyloid-β Toxicity: In Vitro Analysis of Aβ42(G37V) Variant Impact on Aβ42 Aggregation and Cytotoxicity
by Shu-Hsiang Huang, Shang-Ting Fang, Chin-Hao Yang, Je-Wen Liou and Yi-Cheng Chen
Int. J. Mol. Sci. 2024, 25(23), 13219; https://doi.org/10.3390/ijms252313219 - 9 Dec 2024
Viewed by 1253
Abstract
Alzheimer’s disease (AD) is primarily driven by the formation of toxic amyloid-β (Aβ) aggregates, with Aβ42 being a pivotal contributor to disease pathology. This study investigates a novel agent to mitigate Aβ42-induced toxicity by co-assembling Aβ42 with its G37V variant (Aβ42(G37V)), where Gly [...] Read more.
Alzheimer’s disease (AD) is primarily driven by the formation of toxic amyloid-β (Aβ) aggregates, with Aβ42 being a pivotal contributor to disease pathology. This study investigates a novel agent to mitigate Aβ42-induced toxicity by co-assembling Aβ42 with its G37V variant (Aβ42(G37V)), where Gly at position 37 is substituted with valine. Using a combination of Thioflavin-T (Th-T) fluorescence assays, Western blot analysis, atomic force microscopy (AFM)/transmission electron microscopy (TEM), and biochemical assays, we demonstrated that adding Aβ42(G37V) significantly accelerates Aβ42 aggregation rate and mass while altering the morphology of the resulting aggregates. Consequently, adding Aβ42(G37V) reduces the Aβ42 aggregates-induced cytotoxicity, as evidenced by improved cell viability assays. The possible mechanism for this effect is that adding Aβ42(G37V) reduces the production of reactive oxygen species (ROS) and lipid peroxidation, typically elevated in response to Aβ42, indicating its protective effects against oxidative stress. These findings suggest that Aβ42(G37V) could be a promising candidate for modulating Aβ42 aggregation dynamics and reducing its neurotoxic effects, providing a new avenue for potential therapeutic interventions in AD. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 6840 KiB  
Article
Noradrenaline Protects Human Microglial Cells (HMC3) Against Apoptosis and DNA Damage Induced by LPS and Aβ1-42 Aggregates In Vitro
by Julia Barczuk, Grzegorz Galita, Natalia Siwecka, Michał Golberg, Kamil Saramowicz, Zuzanna Granek, Wojciech Wiese, Ireneusz Majsterek and Wioletta Rozpędek-Kamińska
Int. J. Mol. Sci. 2024, 25(21), 11399; https://doi.org/10.3390/ijms252111399 - 23 Oct 2024
Cited by 1 | Viewed by 2337
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, characterized by the accumulation of amyloid-beta (Aβ) plaques and neuroinflammation. This study investigates the protective effects of noradrenaline (NA) on human microglial cells exposed to lipopolysaccharides (LPS) and Aβ aggregates—major contributors to inflammation and [...] Read more.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, characterized by the accumulation of amyloid-beta (Aβ) plaques and neuroinflammation. This study investigates the protective effects of noradrenaline (NA) on human microglial cells exposed to lipopolysaccharides (LPS) and Aβ aggregates—major contributors to inflammation and cellular damage in AD. The reduced Aβ aggregation in the HMC3 human microglial cells co-treated with Aβ and NA was confirmed by thioflavin T (ThT) assay, fluorescent ThT staining, and immunocytochemistry (ICC). The significantly increased viability of HMC3 cells after 48 h of incubation with NA at 50 µM, 25 µM, and 10 µM, exposed to IC50 LPS and IC50 Aβ, was confirmed by XTT and LDH assays. Moreover, we found that NA treatment at 25 μM and 50 μM concentrations in HMC3 cells exposed to IC50 LPS or IC50 Aβ results in an increased proliferation of HMC3 cells, their return to normal morphology, decreased levels of DNA damage, reduced caspase-3 activity, decreased expression of pro-apoptotic DDIT3 and BAX, and increased expression of anti-apoptotic BCL-2 genes and proteins, leading to enhanced cell survival, when compared to that of the HMC3 cells treated only with IC50 LPS or IC50 Aβ. Furthermore, we showed that NA induces the degradation of both extracellular and intracellular Aβ deposits and downregulates hypoxia-inducible factor 1α (HIF-1α), which is linked to impaired Aβ clearance and AD progression. These findings indicate that NA holds promise as a therapeutic target to address microglial dysfunction and potentially slow the progression of AD. Its neuroprotective effects, particularly in reducing inflammation and regulating microglial activity, warrant further investigation into its broader role in mitigating neuroinflammation and preserving microglial function in AD. Full article
Show Figures

Figure 1

20 pages, 10282 KiB  
Article
Molecular Integrative Study on Inhibitory Effects of Pentapeptides on Polymerization and Cell Toxicity of Amyloid-β Peptide (1–42)
by Lianmeng Ye, Nuela Manka’a Che Ajuyo, Zhongyun Wu, Nan Yuan, Zhengpan Xiao, Wenyu Gu, Jiazheng Zhao, Yechun Pei, Yi Min and Dayong Wang
Curr. Issues Mol. Biol. 2024, 46(9), 10160-10179; https://doi.org/10.3390/cimb46090606 - 14 Sep 2024
Viewed by 1498
Abstract
Alzheimer’s Disease (AD) is a multifaceted neurodegenerative disease predominantly defined by the extracellular accumulation of amyloid-β (Aβ) peptide. In light of this, in the past decade, several clinical approaches have been used aiming at developing peptides for therapeutic use in AD. The use [...] Read more.
Alzheimer’s Disease (AD) is a multifaceted neurodegenerative disease predominantly defined by the extracellular accumulation of amyloid-β (Aβ) peptide. In light of this, in the past decade, several clinical approaches have been used aiming at developing peptides for therapeutic use in AD. The use of cationic arginine-rich peptides (CARPs) in targeting protein aggregations has been on the rise. Also, the process of peptide development employing computational approaches has attracted a lot of attention recently. Using a structure database containing pentapeptides made from 20 L-α amino acids, we employed molecular docking to sort pentapeptides that can bind to Aβ42, then performed molecular dynamics (MD) analyses, including analysis of the binding stability, interaction energy, and binding free energy to screen ligands. Transmission electron microscopy (TEM), circular dichroism (CD), thioflavin T (ThT) fluorescence detection of Aβ42 polymerization, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and the flow cytometry of reactive oxygen species (ROS) were carried out to evaluate the influence of pentapeptides on the aggregation and cell toxicity of Aβ42. Two pentapeptides (TRRRR and ARRGR) were found to have strong effects on inhibiting the aggregation of Aβ42 and reducing the toxicity of Aβ42 secreted by SH-SY5Y cells, including cell death, reactive oxygen species (ROS) production, and apoptosis. Full article
Show Figures

Figure 1

18 pages, 5252 KiB  
Article
The Identification of Bioactive Compounds in the Aerial Parts of Agrimonia pilosa and Their Inhibitory Effects on Beta-Amyloid Production and Aggregation
by Chung Hyeon Lee, Min Sung Ko, Ye Seul Kim, Kwang Woo Hwang and So-Young Park
Separations 2024, 11(8), 243; https://doi.org/10.3390/separations11080243 - 9 Aug 2024
Viewed by 1587
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by memory and cognitive decline in older individuals. Beta-amyloid (Aβ), a significant component of senile plaques, is recognized as a primary contributor to AD pathology. Hence, substances that can inhibit Aβ [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative condition characterized by memory and cognitive decline in older individuals. Beta-amyloid (Aβ), a significant component of senile plaques, is recognized as a primary contributor to AD pathology. Hence, substances that can inhibit Aβ production and/or accumulation are crucial for AD prevention and treatment. Agrimonia pilosa LEDEB. (A. pilosa) (Rosaceae), specifically its aerial parts, was identified in our previous screening study as a promising candidate with inhibitory effects on Aβ production. Therefore, in this study, A. pilosa extract was investigated for its anti-amyloidogenic effects, and its bioactive principles were isolated and identified. The ethanol extract of A. pilosa reduced the levels of sAPPβ and β-secretase by approximately 3% and 40%, respectively, compared to the DMSO-treated control group in APP-CHO cells (a cell line expressing amyloid precursor protein), which were similar to those in the positive control group. In addition, the ethanol extract of A. pilosa also hindered Aβ’s aggregation into fibrils and facilitated the disaggregation of Aβ aggregates, as confirmed by a Thioflavin T (Th T) assay. Subsequently, the active constituents were isolated using a bioassay-guided isolation method involving diverse column chromatography. Eleven compounds were identified—epi-catechin (1), catechin (2), (2S, 3S)-dihydrokaempferol 3-O-β-D-glucopyranoside (3), (-)-epiafzelechin 5-O-β-D-glucopyranoside (4), kaempferol 3-O-β-D-glucopyranoside (5), apigenin 7-O-β-D-glucopyranoside (6), dihydrokaempferol 7-O-β-D-glucopyranoside (7), quercetin 3-O-β-D-glucopyranoside (8), (2S, 3S)-taxifolin 3-O-β-D-glucopyranoside (9), luteolin 7-O-β-D-glucopyranoside (10), and apigenin 7-O-β-D-methylglucuronate (11)—identified through 1D and 2D NMR analysis and comparison with data from the literature. These compounds significantly decreased Aβ production by reducing β- and γ-secretase levels. Moreover, none of the compounds affected the expression levels of sAPPα or α-secretase. Further, compounds 1, 2, 4, 8, and 10 demonstrated a dose-dependent reduction in Aβ aggregation and promoted the disaggregation of pre-formed Aβ aggregates. Notably, compound 8 inhibited the aggregation of Aβ into fibrils by about 43% and facilitated the disassembly of Aβ aggregates by 41% compared to the control group containing only Aβ. These findings underscore the potential of A. pilosa extract and its constituents to mitigate a crucial pathological aspect of AD. Therefore, A. pilosa extract and its active constituents hold promise for development as therapeutics and preventatives of AD. Full article
Show Figures

Figure 1

12 pages, 1937 KiB  
Article
Comparison of Double-Stranded DNA at the 5′ and 3′ Ends of the G-Triplex and Its Application in the Detection of Hg(II)
by Yule Cai, Ziyi Wu, Xiangxiang Li, Xingting Hu, Jiamin Wu, Zhengying You and Jieqiong Qiu
Int. J. Mol. Sci. 2024, 25(15), 8159; https://doi.org/10.3390/ijms25158159 - 26 Jul 2024
Viewed by 957
Abstract
Leveraging the fluorescence enhancement effect of the G-triplex (G3)/thioflavin T (ThT) catalyzed by the adjacent double-stranded DNA positioned at the 5′ terminus of the G3, the G3-specific oligonucleotide (G3MB6) was utilized to facilitate the rapid detection of mercury (Hg(II)) through thymine–Hg(II)–thymine (T-Hg(II)-T) interactions. [...] Read more.
Leveraging the fluorescence enhancement effect of the G-triplex (G3)/thioflavin T (ThT) catalyzed by the adjacent double-stranded DNA positioned at the 5′ terminus of the G3, the G3-specific oligonucleotide (G3MB6) was utilized to facilitate the rapid detection of mercury (Hg(II)) through thymine–Hg(II)–thymine (T-Hg(II)-T) interactions. G3MB6 adopted a hairpin structure in which partially complementary strands could be disrupted with the presence of Hg(II). It prompted the formation of double-stranded DNA by T-Hg(II)-T, inducing the unbound single strand of G3MB6 to spontaneously form a parallel G3 structure, producing a solid fluorescence signal by ThT. Conversely, fluorescence was absent without Hg(II), since no double strand and formation of G3 occurred. The fluorescence intensity of G3MB6 exhibited a positive correlation with Hg(II) concentrations from 17.72 to 300 nM (R2 = 0.9954), boasting a notably low quality of limitation (LOQ) of 17.72 nM. Additionally, it demonstrated remarkable selectivity for detecting Hg(II). Upon application to detect Hg(II) in milk samples, the recovery rates went from 100.3% to 103.2%. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 1800 KiB  
Article
Sorghum Grain Polyphenolic Extracts Demonstrate Neuroprotective Effects Related to Alzheimer’s Disease in Cellular Assays
by Nasim Rezaee, Eugene Hone, Hamid R. Sohrabi, Stuart Johnson, Leizhou Zhong, Prakhar Chatur, Stuart Gunzburg, Ralph N. Martins and W. M. A. D. Binosha Fernando
Foods 2024, 13(11), 1716; https://doi.org/10.3390/foods13111716 - 30 May 2024
Cited by 3 | Viewed by 2096
Abstract
Sorghum grain contains high levels and a diverse profile of polyphenols (PPs), which are antioxidants known to reduce oxidative stress when consumed in the diet. Oxidative stress leading to amyloid-β (Aβ) aggregation, neurotoxicity, and mitochondrial dysfunction is implicated in the pathogenesis of Alzheimer’s [...] Read more.
Sorghum grain contains high levels and a diverse profile of polyphenols (PPs), which are antioxidants known to reduce oxidative stress when consumed in the diet. Oxidative stress leading to amyloid-β (Aβ) aggregation, neurotoxicity, and mitochondrial dysfunction is implicated in the pathogenesis of Alzheimer’s disease (AD). Thus, PPs have gained attention as possible therapeutic agents for combating AD. This study aimed to (a) quantify the phenolic compounds (PP) and antioxidant capacities in extracts from six different varieties of sorghum grain and (b) investigate whether these PP extracts exhibit any protective effects on human neuroblastoma (BE(2)-M17) cells against Aβ- and tau-induced toxicity, Aβ aggregation, mitochondrial dysfunction, and reactive oxygen species (ROS) induced by Aβ and tert-butyl hydroperoxide (TBHP). PP and antioxidant capacity were quantified using chemical assays. Aβ- and tau-induced toxicity was determined using the 3-(4,5-dimenthylthiazol-2-yl)-2,5-dimethyltetrazolium bromide (MTS) assay. The thioflavin T (Th-T) assay assessed anti-Aβ aggregation. The dichlorodihydrofluorescein diacetate (DCFDA) assay determined the levels of general ROS and the MitoSOX assay determined the levels of mitochondrial superoxide. Sorghum varieties Shawaya short black-1 and IS1311C possessed the highest levels of total phenolics, total flavonoids, and antioxidant capacity, and sorghum varieties differed significantly in their profile of individual PPs. All extracts significantly increased cell viability compared to the control (minus extract). Variety QL33 (at 2000 µg sorghum flour equivalents/mL) showed the strongest protective effect with a 28% reduction in Aβ-toxicity cell death. The extracts of all sorghum varieties significantly reduced Aβ aggregation. All extracts except that from variety B923296 demonstrated a significant (p ≤ 0.05) downregulation of Aβ-induced and TBHP-induced ROS and mitochondrial superoxide relative to the control (minus extract) in a dose- and variety-dependent manner. We have demonstrated for the first time that sorghum polyphenolic extracts show promising neuroprotective effects against AD, which indicates the potential of sorghum foods to exert a similar beneficial property in the human diet. However, further analysis in other cellular models and in vivo is needed to confirm these effects. Full article
Show Figures

Figure 1

19 pages, 3398 KiB  
Article
4-Oxo-2-Nonenal- and Agitation-Induced Aggregates of α-Synuclein and Phosphorylated α-Synuclein with Distinct Biophysical Properties and Biomedical Applications
by Tie Wang, Weijin Liu, Qidi Zhang, Jie Jiao, Zihao Wang, Ge Gao and Hui Yang
Cells 2024, 13(9), 739; https://doi.org/10.3390/cells13090739 - 24 Apr 2024
Cited by 4 | Viewed by 1855
Abstract
α-Synuclein (α-syn) can form oligomers, protofibrils, and fibrils, which are associated with the pathogenesis of Parkinson’s disease and other synucleinopathies. Both the lipid peroxidation product 4-oxo-2-nonenal (ONE) and agitation can induce aggregation of α-syn and phosphorylated α-syn. Thus, clarification of the characteristics of [...] Read more.
α-Synuclein (α-syn) can form oligomers, protofibrils, and fibrils, which are associated with the pathogenesis of Parkinson’s disease and other synucleinopathies. Both the lipid peroxidation product 4-oxo-2-nonenal (ONE) and agitation can induce aggregation of α-syn and phosphorylated α-syn. Thus, clarification of the characteristics of different α-syn species could help to select suitable aggregates for diagnosis and elucidate the pathogenesis of diseases. Here, we characterized ONE-induced wild-type (WT) α-syn aggregates (OW), ONE-induced phosphorylated α-syn (p-α-syn) aggregates (OP), agitation-induced α-syn preformed fibrils (PFF), and agitation-induced p-α-syn preformed fibrils (pPFF). Thioflavin T (ThT) dying demonstrated that OW and OP had fewer fibrils than the PFF and pPFF. Transmission electron microscopy revealed that the lengths of PFF and pPFF were similar, but the diameters differed. OW and OP had more compact structures than PFF and pPFF. Aggregation of p-α-syn was significantly faster than WT α-syn. Furthermore, OW and OP were more sodium dodecyl sulfate-stable and proteinase K-resistant, suggesting greater stability and compactness, while aggregates of PFF and pPFF were more sensitive to proteinase K treatment. Both ONE- and agitation-induced aggregates were cytotoxic when added exogenously to SH-SY5Y cells with increasing incubation times, but the agitation-induced aggregates caused cell toxicity in a shorter time and more p-α-syn inclusions. Similarly, p-proteins were more cytotoxic than non-p-proteins. Finally, all four aggregates were used as standard antigens to establish sandwich enzyme-linked immunosorbent assay (ELISA). The results showed that the recognition efficiency of OW and OP was more sensitive than that of PFF and pPFF. The OW- and OP-specific ELISA for detection of p-α-syn and α-syn in plasma samples of Thy1-α-syn transgenic mice showed that the content of aggregates could reflect the extent of disease. ONE and agitation induced the formation of α-syn aggregates with distinct biophysical properties and biomedical applications. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Graphical abstract

Back to TopTop