Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = thin-film antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7597 KiB  
Article
Screen-Printed 1 × 4 Quasi-Yagi-Uda Antenna Array on Highly Flexible Transparent Substrate for the Emerging 5G Applications
by Matthieu Egels, Anton Venouil, Chaouki Hannachi, Philippe Pannier, Mohammed Benwadih and Christophe Serbutoviez
Electronics 2025, 14(14), 2850; https://doi.org/10.3390/electronics14142850 - 16 Jul 2025
Viewed by 263
Abstract
In the Internet of Things (IoT) era, the demand for cost-effective, flexible, wearable antennas and circuits has been growing. Accordingly, screen-printing techniques are becoming more popular due to their lower costs and high-volume manufacturing. This paper presents and investigates a full-screen-printed 1 × [...] Read more.
In the Internet of Things (IoT) era, the demand for cost-effective, flexible, wearable antennas and circuits has been growing. Accordingly, screen-printing techniques are becoming more popular due to their lower costs and high-volume manufacturing. This paper presents and investigates a full-screen-printed 1 × 4 Quasi-Yagi-Uda antenna array on a high-transparency flexible Zeonor thin-film substrate for emerging 26 GHz band (24.25–27.55 GHz) 5G applications. As part of this study, screen-printing implementation rules are developed by properly managing ink layer thickness on a transparent flexible Zeonor thin-film dielectric to achieve a decent antenna array performance. In addition, a screen-printing repeatability study has been carried out through a performance comparison of 24 antenna array samples manufactured by our research partner from CEA-Liten Grenoble. Despite the challenging antenna array screen printing at higher frequencies, the measured results show a good antenna performance as anticipated from the traditional subtractive printed circuit board (PCB) manufacturing process using standard substrates. It shows a wide-band matched input impedance from 22–28 GHz (i.e., 23% of relative band-width) and a maximum realized gain of 12.8 dB at 27 GHz. Full article
Show Figures

Figure 1

23 pages, 4015 KiB  
Article
Predicting Electromagnetic Performance Under Wrinkling in Thin-Film Phased Arrays
by Xiaotao Zhou, Jianfei Yang, Lei Zhang, Huanxiao Li, Xin Jin, Yesen Fan, Yan Xu and Xiaofei Ma
Aerospace 2025, 12(7), 630; https://doi.org/10.3390/aerospace12070630 - 14 Jul 2025
Viewed by 265
Abstract
Deployable thin-film antennas deliver large aperture gains and high stowage efficiency for spaceborne phased arrays but suffer wrinkling-induced planarity loss and radiation distortion. To bridge the lack of electromechanical coupling models for tensioned thin-film patch antennas, we present a unified framework combining structural [...] Read more.
Deployable thin-film antennas deliver large aperture gains and high stowage efficiency for spaceborne phased arrays but suffer wrinkling-induced planarity loss and radiation distortion. To bridge the lack of electromechanical coupling models for tensioned thin-film patch antennas, we present a unified framework combining structural deformation and electromagnetic simulation. We derive a coupling model capturing the increased bending stiffness of stepped-thickness membranes, formulate a wrinkling analysis algorithm to compute tension-induced displacements, and fit representative unit-cell deformations to a dual-domain displacement model. Parametric studies across stiffness ratios confirm the framework’s ability to predict shifts in pattern, gain, and impedance due to wrinkling. This tool supports the optimized design of wrinkle-resistant thin-film phased arrays for reliable, high-performance space communications. Full article
(This article belongs to the Special Issue Space Mechanisms and Robots)
Show Figures

Figure 1

12 pages, 4623 KiB  
Article
Large-Area Deposition of Hydrophobic Poly(hexafluorobutyl Acrylate) Thin Films on Wetting-Sensitive and Flexible Substrates via Plasma-Enhanced Chemical Vapor Deposition
by Kurtuluş Yılmaz, Mehmet Gürsoy and Mustafa Karaman
Polymers 2025, 17(6), 791; https://doi.org/10.3390/polym17060791 - 17 Mar 2025
Viewed by 603
Abstract
In this study, hydrophobic poly(hexafluorobutyl acrylate) (PHFBA) thin films were successfully deposited over a large area of 25 × 50 cm using plasma-enhanced chemical vapor deposition (PECVD). Key parameters, including plasma power and the distance between the plasma antenna and the substrate, were [...] Read more.
In this study, hydrophobic poly(hexafluorobutyl acrylate) (PHFBA) thin films were successfully deposited over a large area of 25 × 50 cm using plasma-enhanced chemical vapor deposition (PECVD). Key parameters, including plasma power and the distance between the plasma antenna and the substrate, were optimized to achieve the highest deposition rate while ensuring uniformity and defect-free coatings. The optimal conditions were determined as 5 W plasma power and a 9 cm antenna–substrate distance, yielding a maximum deposition rate of 11.3 nm/min. PHFBA’s low fluorine content makes it a more environmentally and biologically friendly alternative compared to heavily fluorinated polymers, addressing concerns about toxicity and environmental impact. The coatings were applied to a flexible and wetting-sensitive paper towel substrate, which was successfully coated without any visible defects. The contact angle measurements confirmed the hydrophobic nature of the films, with a maximum water contact angle of 131.9° after the deposition of PHFBA. This study highlights the potential of PECVD as an efficient and scalable method for producing hydrophobic coatings, combining high-performance properties with improved environmental considerations. The results not only validate PECVD as a scalable and precise method for thin film fabrication but also open new possibilities for its use in applications requiring durable and functional surface modifications. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

15 pages, 3954 KiB  
Article
A Wireless Smart Adhesive Integrated with a Thin-Film Stretchable Inverted-F Antenna
by Ashok Chhetry, Hodam Kim and Yun Soung Kim
Sensors 2024, 24(22), 7155; https://doi.org/10.3390/s24227155 - 7 Nov 2024
Viewed by 2006
Abstract
In recent years, skin-mounted devices have gained prominence in personal wellness and remote patient care. However, the rigid components of many wearables often cause discomfort due to their mechanical mismatch with the skin. To address this, we extend the use of the solderable [...] Read more.
In recent years, skin-mounted devices have gained prominence in personal wellness and remote patient care. However, the rigid components of many wearables often cause discomfort due to their mechanical mismatch with the skin. To address this, we extend the use of the solderable stretchable sensing system (S4) to develop a wireless skin temperature-sensing smart adhesive. This work introduces two novel types of progress in wearables: the first demonstration of Bluetooth-integration and development of a thin-film-based stretchable inverted-F antenna (SIFA). Characterized through RF simulations, vector network analysis under deformation, and anechoic chamber tests, SIFA demonstrated potential as a low-profile, on-body Bluetooth antenna with a resonant frequency of 2.45 GHz that helps S4 retain its thin overall profile. The final S4 system achieved high correlation (R = 0.95, p < 0.001, mean standard error = 0.04 °C) with commercial sensors during daily activities. These findings suggest that S4-based smart adhesives integrated with SIFAs could offer a promising platform for comfortable, efficient, and functional skin-integrated wearables, supporting a range of health monitoring applications. Full article
(This article belongs to the Special Issue Wearable Biomedical Sensors for Mobile Health)
Show Figures

Figure 1

11 pages, 3131 KiB  
Article
Structural Optimization Design of Magnetoelectric Thin-Film Antenna for Bandwidth and Radiation Enhancement
by Xiangyang Li, Pengchao Zhao, Guangyuan Wang, Na Li and Yiqun Zhang
Micromachines 2024, 15(7), 810; https://doi.org/10.3390/mi15070810 - 21 Jun 2024
Cited by 1 | Viewed by 1449
Abstract
The acoustically actuated nanomechanical magnetoelectric (ME) antennas represent a promising new technology that can significantly reduce antenna size by 1–2 orders of magnitude compared to traditional antennas. However, current ME antennas face challenges such as low antenna gain and narrow operating bandwidth, limiting [...] Read more.
The acoustically actuated nanomechanical magnetoelectric (ME) antennas represent a promising new technology that can significantly reduce antenna size by 1–2 orders of magnitude compared to traditional antennas. However, current ME antennas face challenges such as low antenna gain and narrow operating bandwidth, limiting their engineering applications. In this paper, we enhance the bandwidth and radiation performance of ME antennas through structural optimization, leveraging theoretical analysis and numerical simulations. Our findings indicate that optimizing the inner diameter of the ring-shaped ME antenna can elevate the average stress of the magnetic layer, leading to improved radiation performance and bandwidth compared to circular ME antennas. We establish an optimization model for the radiation performance of the ME antenna and conduct shape optimization simulations using COMSOL Multiphysics. The results of the Multiphysics field optimization align with the stress concentration theory, demonstrating a strong correlation between the radiation performance and bandwidth of the ME antenna with the average stress of the magnetic film. The resonant frequency in the thickness vibration mode is determined to be 170 MHz. Furthermore, shape optimization can enhance the bandwidth by up to 104% compared to circular ME antenna structures of the same size. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 7169 KiB  
Article
Design and Characterization of Surface Acoustic Wave-Based Wireless and Passive Temperature Sensing System
by Zhixin Zhou, Hui Wang and Liang Lou
Micromachines 2024, 15(4), 544; https://doi.org/10.3390/mi15040544 - 18 Apr 2024
Cited by 1 | Viewed by 4064
Abstract
The surface acoustic wave (SAW) temperature sensor has received significant attention due to its wirelessly powered, battery-free, and chipless capabilities. This paper proposes a wireless sensing system comprising a one-port SAW resonator, helix antenna, and transceiver circuit. The SAW resonator used in this [...] Read more.
The surface acoustic wave (SAW) temperature sensor has received significant attention due to its wirelessly powered, battery-free, and chipless capabilities. This paper proposes a wireless sensing system comprising a one-port SAW resonator, helix antenna, and transceiver circuit. The SAW resonator used in this system is based on aluminum nitride (AlN) thin film, which exhibits high velocity and excellent piezoelectric properties. Simulations and experiments were conducted to investigate the performance of the designed SAW resonator. A helix antenna was also designed using finite element simulation to facilitate signal transmission between the SAW temperature sensor and the transceiver. An impedance-matching network was introduced between the helix antenna and the SAW resonator to optimize signal transmission. When the wireless SAW temperature sensor was placed within a certain distance of the mother antenna, the reflection peak of the SAW resonator was observed in the spectrum of the return signal. The frequency of the echo signal increased almost linearly as the temperature increased during the temperature tests. The fitted temperature coefficient of frequency (TCF) was −31.34 ppm/°C, indicating that the wireless temperature sensing system has high-temperature sensitivity. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications)
Show Figures

Figure 1

3 pages, 924 KiB  
Abstract
Small Footprint Temperature Sensing NFC Tag
by Jorge Pereira, Inês S. Garcia, Gabriel Ribeiro, José Fernandes, Filipe S. Alves, Marco Martins, André Cardoso and Rosana A. Dias
Proceedings 2024, 97(1), 182; https://doi.org/10.3390/proceedings2024097182 - 12 Apr 2024
Viewed by 1276
Abstract
Smart NFC tags are seeing many interesting applications and can benefit from further miniaturization. A passive temperature sensing tag with 5.1 mm diameter is demonstrated, comprising a thin-film microfabricated antenna and an NFC chip. The microantenna/coil comprises two 15 µm-thick electroplated copper layers [...] Read more.
Smart NFC tags are seeing many interesting applications and can benefit from further miniaturization. A passive temperature sensing tag with 5.1 mm diameter is demonstrated, comprising a thin-film microfabricated antenna and an NFC chip. The microantenna/coil comprises two 15 µm-thick electroplated copper layers embedded in SU-8, withstanding the soldering process of a BGA NFC IC. The µ-antenna design challenge is to miniaturize while minimizing performance impairment (inductive-coupling distance), while the micromachining process is very dependent on topography propagation. Fabricated coils were successfully characterized (2.32 µH inductance; 13.76 MHz self-resonance) and temperature was read (after assembly) with a mobile phone at distances of up to 7 mm. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

12 pages, 2086 KiB  
Article
Composite Right/Left-Handed Leaky-Wave Antenna with Electrical Beam Scanning Using Thin-Film Ferroelectric Capacitors
by Roman Platonov, Andrey Altynnikov, Andrey Komlev, Andrey Tumarkin and Andrey Kozyrev
Coatings 2024, 14(1), 143; https://doi.org/10.3390/coatings14010143 - 21 Jan 2024
Viewed by 2146
Abstract
This article presents a wide-angle-scanning leaky-wave antenna (LWA) based on a composite right/left-handed (CRLH) transmission line. In contrast to traditional semiconductor elements, thin-film ferroelectric capacitors were implemented in the CRLH unit cells to enable electric beam scanning. The proposed CRLH LWA has a [...] Read more.
This article presents a wide-angle-scanning leaky-wave antenna (LWA) based on a composite right/left-handed (CRLH) transmission line. In contrast to traditional semiconductor elements, thin-film ferroelectric capacitors were implemented in the CRLH unit cells to enable electric beam scanning. The proposed CRLH LWA has a single-layer design without metalized vias and is compatible with PCB and thin-film technologies. To fabricate the CRLH LWA prototype, dielectric material substrates and thin-film ferroelectric capacitors were manufactured, and their characteristics were investigated. Double-sided metalized fluoroplast-4 reinforced with fiberglass with a permittivity of 2.5 was used as a substrate for CRLH LWA prototyping. A solid solution of barium strontium titanate (BaxSr1xTiO3) with a composition of x=0.3 was used as a ferroelectric material in electrically tunable capacitors. The characteristics of the manufactured ferroelectric thin-film capacitors were measured at a frequency of 1 GHz using the resonance method. The capacitors have a tunability of about two and a quality factor of about 50. The antenna prototype consists of ten units with a total length of 1.25 wavelengths at the operating frequency of close to 2.4 GHz. The experimental results demonstrate that the main beam can be shifted within the range of −40 to 16 degrees and has a gain of up to 3.2 dB. The simple design, low cost, and excellent wide-angle scanning make the proposed CRLH LWA viable in wireless communication systems. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

14 pages, 6047 KiB  
Article
Array Study of VLF Thin-Film Magnetoelectric Antenna with a Microbridge Structure
by Jianhua Jin, Long Jing, Chao Zuo, Zhiling Ma, Yanfeng Shi, Xiaofei Yang and Shi Chen
Micromachines 2024, 15(1), 11; https://doi.org/10.3390/mi15010011 - 20 Dec 2023
Cited by 4 | Viewed by 1895
Abstract
Recently, magnetoelectric (ME) antennas have become a hot topic in the field of antenna miniaturization in the very-low-frequency (VLF) band because their size can be reduced to one-ten-thousandth of the size of conventional electric antennas. However, they still suffer from narrow transmission/reception bandwidth [...] Read more.
Recently, magnetoelectric (ME) antennas have become a hot topic in the field of antenna miniaturization in the very-low-frequency (VLF) band because their size can be reduced to one-ten-thousandth of the size of conventional electric antennas. However, they still suffer from narrow transmission/reception bandwidth and weak radiation intensity. To address these issues, VLF thin-film ME antennas with a microbridge structure are designed, and the method of array connection is used. Test results show that the detection limit of the ME antenna unit is 636 pT/√Hz at 23 kHz and the radiant magnetic field intensity at 0.12 m is 0.87 nT (input power of 10 mW). By series-connecting three ME antenna units with the same resonance frequency, the output response has been increased to 1.72 times and the EM wave radiation intensity is increased to 1.9 times compared to a single unit. By parallel-connecting two ME antenna units with different resonance frequencies, the output response bandwidth has been expanded to 1.56 times compared to a single unit, and the signal radiation bandwidth has been expanded to 1.47 times. This work provides a valuable reference for the future larger-scale arraying of ME antennas. Full article
Show Figures

Figure 1

15 pages, 4332 KiB  
Article
Analysis of Structural Boundary Effects of Copper-Coated Films and Their Application to Space Antennas
by Xiaotao Zhou, Huanxiao Li and Xiaofei Ma
Coatings 2023, 13(9), 1612; https://doi.org/10.3390/coatings13091612 - 14 Sep 2023
Cited by 3 | Viewed by 1461
Abstract
Copper-coated films are a solution for flexible electronic devices. One of the applications is a flexible-tension film-deployable antenna, which is a large deployable space antenna with broad application prospects. To analyze the possibility of applying coated films to the antenna, surface accuracy evaluation [...] Read more.
Copper-coated films are a solution for flexible electronic devices. One of the applications is a flexible-tension film-deployable antenna, which is a large deployable space antenna with broad application prospects. To analyze the possibility of applying coated films to the antenna, surface accuracy evaluation is required. The finite element method (FEM) was used to analyze the surface accuracy of the copper-coated thin-film structures. Both wrinkling and stretching–bending coupling deformation were considered. Simplified models were applied to study factors influencing the surface accuracy under boundary effects. Different sizes of coated area and different boundary conditions were simulated. The results showed the characteristic boundary effects of copper-coated thin-film structures and the influence curve of film thickness and patch size on boundary effects. These findings will inform the design and analysis of variable-stiffness thin-film antennas. On this basis, the application of a flexible-tension film-deployable antenna is discussed, along with a measure to improve the surface accuracy. Full article
Show Figures

Figure 1

15 pages, 4586 KiB  
Article
Development of Temperature Sensor Based on AlN/ScAlN SAW Resonators
by Min Wei, Yan Liu, Yuanhang Qu, Xiyu Gu, Yilin Wang, Wenjuan Liu, Yao Cai, Shishang Guo and Chengliang Sun
Electronics 2023, 12(18), 3863; https://doi.org/10.3390/electronics12183863 - 12 Sep 2023
Cited by 11 | Viewed by 2341
Abstract
Temperature monitoring in extreme environments presents new challenges for MEMS sensors. Since aluminum nitride (AlN)/scandium aluminum nitride (ScAlN)-based surface acoustic wave (SAW) devices have a high Q-value, good temperature drift characteristics, and the ability to be compatible with CMOS, they have become some [...] Read more.
Temperature monitoring in extreme environments presents new challenges for MEMS sensors. Since aluminum nitride (AlN)/scandium aluminum nitride (ScAlN)-based surface acoustic wave (SAW) devices have a high Q-value, good temperature drift characteristics, and the ability to be compatible with CMOS, they have become some of the preferred devices for wireless passive temperature measurement. This paper presents the development of AlN/ScAlN SAW-based temperature sensors. Three methods were used to characterize the temperature characteristics of a thin-film SAW resonator, including direct measurement by GSG probe station, and indirect measurement by oscillation circuit and antenna. The temperature characteristics of the three methods in the range of 30–100 °C were studied. The experimental results show that the sensitivities obtained with the three schemes were −28.9 ppm/K, −33.6 ppm/K, and −29.3 ppm/K. The temperature sensor using the direct measurement method had the best linearity, with a value of 0.0019%, and highest accuracy at ±0.70 °C. Although there were differences in performance, the characteristics of the three SAW temperature sensors make them suitable for sensing in various complex environments. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors: Advances, Trends and Challenges)
Show Figures

Figure 1

15 pages, 14777 KiB  
Article
A Miniaturized Thin-Film UWB Monopole Antenna Implemented with High-Dk Adhesive
by Duc Nguyen Dao and Jae-Young Chung
Electronics 2023, 12(16), 3445; https://doi.org/10.3390/electronics12163445 - 15 Aug 2023
Cited by 9 | Viewed by 3111
Abstract
This paper presents the design of a miniaturized polyimide-based antenna for ultra-wideband (UWB) communication. Miniaturization is achieved through the utilization of adhesive material with a high dielectric constant (high-Dk). The goal of this work is to investigate the impact of such material on [...] Read more.
This paper presents the design of a miniaturized polyimide-based antenna for ultra-wideband (UWB) communication. Miniaturization is achieved through the utilization of adhesive material with a high dielectric constant (high-Dk). The goal of this work is to investigate the impact of such material on the antenna performance and to optimize its design for UWB operation. The manufacturing of the antenna using the proposed structure is developed, and the prototype of an antenna for the UWB high band (6–9 GHz) is measured and analyzed. By leveraging the high Dk of the adhesive material, the simulation and measurement results show that the proposed antenna with a high-Dk adhesive film can achieve compact dimensions with good performance in terms of the gain and time domain characteristics. The results of this study show the potential of exhibiting a reduction in the size of the antenna and will contribute to the advancement of miniaturized UWB antenna technology. Full article
(This article belongs to the Special Issue Flexible Antenna for Microwave Application)
Show Figures

Figure 1

10 pages, 3192 KiB  
Communication
Dual-Polarized Transparent Antenna and Its Application for Capsule Endoscopy System
by Yu-Ming Lin, Hung-Wei Wu, Cheng-Yuan Hung, Shoou-Jinn Chang and Ran Liu
Electronics 2023, 12(14), 3124; https://doi.org/10.3390/electronics12143124 - 18 Jul 2023
Cited by 2 | Viewed by 2539
Abstract
In this paper, we proposed a small transparent thin film antenna for a wireless capsule endoscopy system. The transparent thin film antenna is needed to provide a clear 360° broad-sight view of the wireless capsule system in the future. Furthermore, the transparent thin [...] Read more.
In this paper, we proposed a small transparent thin film antenna for a wireless capsule endoscopy system. The transparent thin film antenna is needed to provide a clear 360° broad-sight view of the wireless capsule system in the future. Furthermore, the transparent thin film is critical for performing the dual-polarized antenna operating at 2.45 GHz. The proposed transparent thin film uses the nano-alignment process to further achieve low resistivity from 3.78 × 10−4 Ω-cm to 9.14 × 10−5 Ω-cm and improves the transparency by over 70%. The nano-alignment process includes periodic electrodes with AC signals that can effectively rearrange the nano-material into an ordered arrangement, enhancing the thin film’s microwave characteristics. Due to applying to the capsule endoscopy system, the ability of water resistance is also considered in this design. Therefore, the O2 plasma treatment is used to improve the water contact angle from 76° to 31°, measured on the surface of the thin film. The proposed transparent antenna is designed to have a center frequency of 2.45 GHz, a bandwidth of 855 MHz, and an antenna gain of −26.3 dBi, and is helpful for capsule endoscopy systems. Full article
Show Figures

Figure 1

13 pages, 4038 KiB  
Article
An Interventional Surgical Robot Based on Multi-Data Detection
by Dong Yang, Nan Xiao, Yuxuan Xia and Wei Wei
Appl. Sci. 2023, 13(9), 5301; https://doi.org/10.3390/app13095301 - 24 Apr 2023
Cited by 3 | Viewed by 2065
Abstract
Vascular interventional surgery is the most common method for the treatment of cardiovascular diseases. Interventional surgical robot has attracted extensive attention because of its precise control and remote operation. However, conventional force sensors in surgical robots can only detect the axial thrust pressure [...] Read more.
Vascular interventional surgery is the most common method for the treatment of cardiovascular diseases. Interventional surgical robot has attracted extensive attention because of its precise control and remote operation. However, conventional force sensors in surgical robots can only detect the axial thrust pressure of the catheter. Inspired by the function of insect antennae, we designed a structure with a thin-film force sensing device in the catheter head. Combined with the pressure sensor in the catheter clamping device, multiple sensor data were fused to predict and classify the current vascular environment using the LSTM network with 94.2% accuracy. During robotic surgery, real-time feedback of current pressure information and vascular curvature information can enhance doctors’ judgment of surgical status and improve surgical safety. Full article
(This article belongs to the Special Issue Applications of Robotics in Disease Treatment and Rehabilitation)
Show Figures

Figure 1

12 pages, 5833 KiB  
Article
Multilayer Smart Holographic Label with Integrated RFID for Product Security and Monitoring
by Cătălin Pârvulescu, Veronica Anăstăsoaie, Roxana Tomescu, Martino Aldrigo and Dana Cristea
Micromachines 2023, 14(3), 692; https://doi.org/10.3390/mi14030692 - 21 Mar 2023
Cited by 4 | Viewed by 3328
Abstract
Counterfeiting presents a major economic problem and an important risk for the public health and safety of individuals and countries. To make the counterfeiting process more difficult, and to ensure efficient authentication, a solution would be to attach anti-counterfeit labels that include a [...] Read more.
Counterfeiting presents a major economic problem and an important risk for the public health and safety of individuals and countries. To make the counterfeiting process more difficult, and to ensure efficient authentication, a solution would be to attach anti-counterfeit labels that include a radio frequency identification (RFID) element to the products. This can allow real-time quality check along the entire supply chain. In this paper we present the technology optimized to obtain a multilayer holographic label with a high degree of security, patterned on a thin zinc sulfide film of a semi-transparent holographic foil rather than on the standard substrate for diffractive optical elements (metallized foil). The label is applied onto the product surface or packaging for anti-counterfeit protection. The developed multilayer structure contains various elements such as: a holographic background, nanotext-type elements, holographic elements, and an RFID antenna. The employed semi-transparent holographic foil offers the RFID antenna the possibility to transmit the electromagnetic signal through the label and thus to maximize the antenna footprint, achieving up to 10 m reading distance, with a 6 cm × 6 cm label, much smaller than the commercial standard (minimum 10 cm × 10 cm). Full article
(This article belongs to the Special Issue Novel Developments in Waveguides and Antennas)
Show Figures

Figure 1

Back to TopTop