Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = thermokarst collapse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3561 KB  
Article
Research on the Safety Factor Model of Frozen Soil Slopes During Thaw Collapse Considering Temperature Effects
by Feike Duan, Bo Tian, Sen Hu and Lei Quan
Sustainability 2025, 17(17), 7779; https://doi.org/10.3390/su17177779 - 29 Aug 2025
Viewed by 340
Abstract
With the global climate warming, the temperature conditions in permafrost regions have changed significantly, and the stability of permafrost slopes is facing serious threats. This paper focuses on the construction of the instability mechanism and prediction model of permafrost slopes considering the influence [...] Read more.
With the global climate warming, the temperature conditions in permafrost regions have changed significantly, and the stability of permafrost slopes is facing serious threats. This paper focuses on the construction of the instability mechanism and prediction model of permafrost slopes considering the influence of temperature. By analyzing the thermokarst collapse process of permafrost slopes, the characteristics and causes of stages such as the soil loosening period and the surface sloughing period were studied. Based on the Mohr–Coulomb strength criterion, combined with the simplified Bishop method and the Morgenstern–Price method, a mechanical analysis of the critical state was carried out, and a safety factor formula applicable to the critical state of permafrost slopes was derived. From the curves of the total cohesion and effective internal friction angle of the experimental soil changing with temperature, an influence model of temperature on the strength parameters was fitted. Considering the factor of freeze–thaw cycles, a safety factor model for permafrost slopes was constructed. Through a large amount of data calculation and analysis of the model, the reliability of the model was verified. This model can be used to predict slope states in practical assessments and optimize slope support structure design parameters in cold regions, providing important references for ensuring engineering safety, reducing geological disasters, and promoting sustainability in cold regions. Finally, potential mitigation measures for frozen soil slope instability based on the findings are briefly discussed. Full article
Show Figures

Figure 1

15 pages, 1883 KB  
Article
Evaluation Index System for Thermokarst Lake Susceptibility: An Effective Tool for Disaster Warning on the Qinghai–Tibet Plateau, China
by Lan Li, Yilu Zhao, Xuan Li, Wankui Ni and Fujun Niu
Sustainability 2025, 17(4), 1464; https://doi.org/10.3390/su17041464 - 11 Feb 2025
Viewed by 758
Abstract
In the context of global warming, landscapes with ice-rich permafrost, such as the Qinghai–Tibet Plateau (QTP), are highly vulnerable. The expansion of thermokarst lakes erodes the surrounding land, leading to collapses of various scales and posing a threat to nearby infrastructure and the [...] Read more.
In the context of global warming, landscapes with ice-rich permafrost, such as the Qinghai–Tibet Plateau (QTP), are highly vulnerable. The expansion of thermokarst lakes erodes the surrounding land, leading to collapses of various scales and posing a threat to nearby infrastructure and the environment. Assessing the susceptibility of thermokarst lakes in remote, data-scarce areas remains a challenging task. In this study, Landsat imagery and human–computer interaction were employed to improve the accuracy of thermokarst lake classification. The study also identified the key factors influencing the occurrence of thermokarst lakes, including the lake density, soil moisture (SM), slope, vegetation, snow cover, ground temperature, precipitation, and permafrost stability (PS). The results indicate that the most susceptible areas cover 19.02% of the QTP’s permafrost region, primarily located in southwestern Qinghai, northeastern Tibet, and the Hoh Xil region. This study provides a framework for mapping the spatial distribution of thermokarst lakes and contributes to understanding the impact of climate change on the QTP. Full article
(This article belongs to the Special Issue Geological Environment Monitoring and Early Warning Systems)
Show Figures

Figure 1

16 pages, 8292 KB  
Article
The Response of Soil Respiration to Temperature and Humidity in the Thermokarst Depression Zone of the Headwater Wetlands of Qinghai Lake
by Yahui Mao, Kelong Chen, Wei Ji and Yanli Yang
Biology 2024, 13(6), 437; https://doi.org/10.3390/biology13060437 - 14 Jun 2024
Cited by 1 | Viewed by 1313
Abstract
As the climate warms, the thickening of the active layer of permafrost has led to permafrost melting and surface collapse, forming thermokarst landforms. These changes significantly impact regional vegetation, soil physicochemical properties, and hydrological processes, thereby exacerbating regional carbon cycling. This study analyzed [...] Read more.
As the climate warms, the thickening of the active layer of permafrost has led to permafrost melting and surface collapse, forming thermokarst landforms. These changes significantly impact regional vegetation, soil physicochemical properties, and hydrological processes, thereby exacerbating regional carbon cycling. This study analyzed the relationship between soil respiration rate (Rs), soil temperature (T), and volumetric water content (VWC) in the thermokarst depression zone of the headwater wetlands of Qinghai Lake, revealing their influence on these soil parameters. Results showed a significant positive correlation between soil temperature and Rs (p < 0.001), and a significant negative correlation between VWC and Rs (p < 0.001). The inhibitory effect of VWC on Rs in the thermokarst depression zone was stronger than under natural conditions (p < 0.05). Single-factor models indicated that the temperature-driven model had higher explanatory power for Rs variation in both the thermokarst depression zone (R2 = 0.509) and under natural conditions (R2 = 0.414), while the humidity-driven model had lower explanatory power. Dual-factor models further improved explanatory power, slightly more so in the thermokarst depression zone. This indicates that temperature and humidity jointly drive Rs. Additionally, during the daytime, temperature had a more significant impact on Rs under natural conditions, while increased VWC inhibited Rs. At night, the positive correlation between Rs and temperature in the thermokarst depression zone increased significantly. The temperature sensitivity (Q10) values of Rs were 3.32 and 1.80 for the thermokarst depression zone and natural conditions, respectively, indicating higher sensitivity to temperature changes at night in the thermokarst depression zone. This study highlights the complexity of soil respiration responses to temperature and humidity in the thermokarst depression zone of Qinghai Lake’s headwater wetlands, contributing to understanding carbon cycling in wetland ecosystems and predicting wetland carbon emissions under climate change. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

18 pages, 9423 KB  
Article
Interferometric SAR Observation of Permafrost Status in the Northern Qinghai-Tibet Plateau by ALOS, ALOS-2 and Sentinel-1 between 2007 and 2021
by Lichuan Zou, Chao Wang, Yixian Tang, Bo Zhang, Hong Zhang and Longkai Dong
Remote Sens. 2022, 14(8), 1870; https://doi.org/10.3390/rs14081870 - 13 Apr 2022
Cited by 17 | Viewed by 3200
Abstract
With global warming, permafrost is undergoing degradation, which may cause thawing subsidence, collapse, and emission of greenhouse gases preserved in previously frozen permafrost, change the local hydrology and ecology system, and threaten infrastructure and indigenous communities. The Qinghai-Tibet Plateau (QTP) is the world’s [...] Read more.
With global warming, permafrost is undergoing degradation, which may cause thawing subsidence, collapse, and emission of greenhouse gases preserved in previously frozen permafrost, change the local hydrology and ecology system, and threaten infrastructure and indigenous communities. The Qinghai-Tibet Plateau (QTP) is the world’s largest permafrost region in the middle and low latitudes. Permafrost status monitoring in the QTP is of great significance to global change and local economic development. In this study, we used 66 scenes of ALOS data (2007–2009), 73 scenes of ALOS-2 data (2015–2020) and 284 scenes of Sentinel-1 data (2017–2021) to evaluate the spatial and temporal permafrost deformation over the 83,000 km2 in the northern QTP, passing through the Tuotuohe, Beiluhe, Wudaoliang and Xidatan regions. We use the SBAS-InSAR method and present a coherence weighted least squares estimator without any hypothetical model to calculate long-term deformation velocity (LTDV) and maximum seasonal deformation (MSD) without any prior knowledge. Analysis of the ALOS results shows that the LTDV ranged from −20 to +20 mm/year during 2007–2009. For the ALOS-2 and Sentinel-1 results, the LTDV ranged from −30 to 30 mm/year during 2015–2021. Further study shows that the expansion areas of permafrost subsidence are concentrated on braided stream plains and thermokarst lakes. In these areas, due to glacial erosion, surface runoff and river alluvium, the contents of water and ground ice are sufficient, which could accelerate permafrost subsidence. In addition, by analyzing LTDV and MSD for the different periods, we found that the L-band ALOS-2 is more sensitive to the thermal collapse of permafrost than the C-band sensor and the detected collapse areas (LTDV < −10 mm/year) are consistent with the GF-1/2 thermal collapse dataset. This research indicates that the InSAR technique could be crucial for monitoring the evolution of permafrost and freeze-thaw disasters. Full article
(This article belongs to the Special Issue ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications)
Show Figures

Graphical abstract

15 pages, 1148 KB  
Article
Novel Psychrophiles and Exopolymers from Permafrost Thaw Lake Sediments
by Ilaria Finore, Adrien Vigneron, Warwick F. Vincent, Luigi Leone, Paola Di Donato, Aniello Schiano Moriello, Barbara Nicolaus and Annarita Poli
Microorganisms 2020, 8(9), 1282; https://doi.org/10.3390/microorganisms8091282 - 22 Aug 2020
Cited by 16 | Viewed by 4090
Abstract
Thermokarst lakes are one of the most abundant types of microbial ecosystems in the circumpolar North. These shallow basins are formed by the thawing and collapse of ice-rich permafrost, with subsequent filling by snow and ice melt. Until now, permafrost thaw lakes have [...] Read more.
Thermokarst lakes are one of the most abundant types of microbial ecosystems in the circumpolar North. These shallow basins are formed by the thawing and collapse of ice-rich permafrost, with subsequent filling by snow and ice melt. Until now, permafrost thaw lakes have received little attention for isolation of microorganisms by culture-based analysis. The discovery of novel psychrophiles and their biomolecules makes these extreme environments suitable sources for the isolation of new strains, including for potential biotechnological applications. In this study, samples of bottom sediments were collected from three permafrost thaw lakes in subarctic Québec, Canada. Their diverse microbial communities were characterized by 16S rRNA gene amplicon analysis, and subsamples were cultured for the isolation of bacterial strains. Phenotypic and genetic characterization of the isolates revealed affinities to the genera Pseudomonas, Paenibacillus, Acinetobacter,Staphylococcus and Sphingomonas. The isolates were then evaluated for their production of extracellular enzymes and exopolymers. Enzymes of potential biotechnological interest included α and β-glucosidase, α and β-maltosidase, β-xylosidase and cellobiohydrolase. One isolate, Pseudomonas extremaustralis strain 2ASCA, also showed the capability to produce, in the loosely bound cell fraction, a levan-type polysaccharide with a yield of 613 mg/L of culture, suggesting its suitability as a candidate for eco-sustainable alternatives to commercial polymers. Full article
Show Figures

Figure 1

15 pages, 8794 KB  
Article
Assessment of the Ice Wedge Polygon Current State by Means of UAV Imagery Analysis (Samoylov Island, the Lena Delta)
by Andrei Kartoziia
Remote Sens. 2019, 11(13), 1627; https://doi.org/10.3390/rs11131627 - 9 Jul 2019
Cited by 24 | Viewed by 6401
Abstract
Modern degradation of Arctic permafrost promotes changes in tundra landscapes and leads to degradation of ice wedge polygons, which are the most widespread landforms of Arctic wetlands. Status assessment of polygon degradation is important for various environmental studies. We have applied the geographic [...] Read more.
Modern degradation of Arctic permafrost promotes changes in tundra landscapes and leads to degradation of ice wedge polygons, which are the most widespread landforms of Arctic wetlands. Status assessment of polygon degradation is important for various environmental studies. We have applied the geographic information systems’ (GIS) analysis of data from unmanned aerial vehicles (UAV) to accurately assess the status of ice wedge polygon degradation on Samoylov Island. We used several modern models of polygon degradation for revealing polygon types, which obviously correspond to different stages of degradation. Manual methods of mapping and a high spatial resolution of used UAV data allowed for a high degree of accuracy in the identification of all land units. The study revealed the following: 41.79% of the first terrace surface was composed of non-degraded polygonal tundra; 18.37% was composed of polygons, which had signs of thermokarst activity and corresponded to various stages of degradation in the models; and 39.84% was composed of collapsed polygons, slopes, valleys, and water bodies, excluding ponds of individual polygons. This study characterizes the current status of polygonal tundra degradation of the first terrace surface on Samoylov Island. Our assessment reflects the landscape condition of the first terrace surface of Samoylov Island, which is the typical island of the southern part of the Lena Delta. Moreover, the study illustrates the potential of UAV data GIS analysis for highly accurate investigations of Arctic landscape changes. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

Back to TopTop