Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = thermoacoustic response time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4877 KiB  
Article
Analysis of Transient Thermoacoustic Characteristics and Performance in Carbon Nanotube Sponge Underwater Transducers
by Qianshou Qi, Zhe Li, Huilin Yin, Yanxia Feng, Zhenhuan Zhou and Dalun Rong
Nanomaterials 2024, 14(10), 817; https://doi.org/10.3390/nano14100817 - 7 May 2024
Viewed by 1588
Abstract
Recent advancements in marine technology have highlighted the urgent need for enhanced underwater acoustic applications, from sonar detection to communication and noise cancellation, driving the pursuit of innovative transducer technologies. In this paper, a new underwater thermoacoustic (TA) transducer made from carbon nanotube [...] Read more.
Recent advancements in marine technology have highlighted the urgent need for enhanced underwater acoustic applications, from sonar detection to communication and noise cancellation, driving the pursuit of innovative transducer technologies. In this paper, a new underwater thermoacoustic (TA) transducer made from carbon nanotube (CNT) sponge is designed to achieve wide bandwidth, high energy conversion efficiency, simple structure, good transient response, and stable sound response, utilizing the TA effect through electro-thermal modulation. The transducer has potential application in underwater acoustic communication. An electro-thermal-acoustic coupled simulation for the open model, sandwich model, and encapsulated model is presented to analyze the transient behaviors of CNT sponge TA transducers in liquid environments. The effects of key design parameters on the acoustic performances of both systems are revealed. The results demonstrate that a short pulse excitation with a low duty cycle could greatly improve the heat dissipation of the encapsulated transducer, especially when the thermoacoustic response time becomes comparable to thermal relaxation time. Full article
Show Figures

Figure 1

10 pages, 3751 KiB  
Article
Numerical Simulations of Thermoacoustic Binary Gas Mixture Batch Separation
by Ahmad Kouta, Tomáš Vít and Petra Dančová
J. Exp. Theor. Anal. 2024, 2(2), 46-55; https://doi.org/10.3390/jeta2020004 - 25 Apr 2024
Viewed by 1926
Abstract
In this paper, 2D simulations were carried out to prove the potential of thermoacoustic technology in separating a binary gas mixture. A 2D model of a gas mixture separator was developed, including a loudspeaker responsible for producing acoustic waves in the separation pipe. [...] Read more.
In this paper, 2D simulations were carried out to prove the potential of thermoacoustic technology in separating a binary gas mixture. A 2D model of a gas mixture separator was developed, including a loudspeaker responsible for producing acoustic waves in the separation pipe. As a result of the imposed sound waves propagating inside the separator, main parameters including pressure, temperature, and density undergo oscillations, which in turn drive the light and heavy gas components in opposite directions. Through time, one end of the separator is enriched with the light component while the other end is enriched with the heavy one. Simulations were all performed using ANSYS Fluent. The aim was to separate an ideal gas mixture of Helium–Argon and study the impact of different parameters on the separation process. Full article
Show Figures

Figure 1

25 pages, 21392 KiB  
Article
Acoustic and Vibration Response and Fatigue Life Analysis of Thin-Walled Connection Structures under Heat Flow Conditions
by Yundong Sha, Wenqiang Zhao, Xiaoning Tang and Fengtong Zhao
Aerospace 2024, 11(4), 287; https://doi.org/10.3390/aerospace11040287 - 8 Apr 2024
Cited by 3 | Viewed by 2455
Abstract
Thin-walled connection structures are commonly used in the hot-end components of aerospace vehicles. Large deflection nonlinear responses and fatigue failure occur due to their discontinuous mass distribution and prominent cross-sectional changes under the action of complex thermal, aerodynamic, and noise loads. A thermoacoustic [...] Read more.
Thin-walled connection structures are commonly used in the hot-end components of aerospace vehicles. Large deflection nonlinear responses and fatigue failure occur due to their discontinuous mass distribution and prominent cross-sectional changes under the action of complex thermal, aerodynamic, and noise loads. A thermoacoustic fatigue test was carried out to obtain the acoustic and vibration responses and fatigue life changes of the connection structure under heat flow conditions in engineering applications. The high-temperature acoustic fatigue test system of aviation thin-walled structures was used, taking the high-temperature alloy thin-walled plate-load-bearing frame bolted connection structure as the research object. As a result, the vibration response and fatigue life under different thermoacoustic loads were obtained. The contact finite element method was used to simulate the connection pre-tightening force, and the coupled finite element/boundary element method was used to calculate the acoustic and vibration response of the heat flow conditions. The changing rules of the frequency response peak value at the critical point of the thin-walled connection structure under the effects of different temperature fields, fluid fields, and sound fields were obtained through the processing and analysis of the calculation results. Considering the structural vibration fatigue damage mechanism, this study employed an improved rainflow counting method to compute the rainflow circulation matrix (RFM) and rainflow damage matrix (RFD) of the vibration stress time history at critical points within the structure framework. Said method was combined with Miner’s linear cumulative damage theory to estimate the fatigue life under various thermal-fluid-acoustic coupled loads. A comprehensive analysis validates the accuracy of the established numerical simulation calculation model in identifying critical connection points within structures subjected to pre-tightening forces. This model effectively characterizes thermal, aerodynamic, and acoustic loads on high-temperature alloy thin-walled-load-bearing frame bolted connection structures. It delineates the relationship between vibration response and fatigue life while assessing the impact of three distinct load parameters. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

13 pages, 3969 KiB  
Article
Experimental Investigation of Stochastically Forced Rijke-Type Supercritical Thermoacoustic Systems
by Hao Zhang, Yuanhao Wang, Xinyan Li, Geng Chen and Yuze Sun
Energies 2023, 16(14), 5300; https://doi.org/10.3390/en16145300 - 11 Jul 2023
Cited by 1 | Viewed by 1314
Abstract
Intense thermoacoustic oscillations may lead to severe deterioration due to the induced intolerable damage to combustors. A better understanding of unstable behaviors is important to prevent or suppress these oscillations. Active thermoacoustic coupling in practical combustors is caused primarily by two approaches: inherent [...] Read more.
Intense thermoacoustic oscillations may lead to severe deterioration due to the induced intolerable damage to combustors. A better understanding of unstable behaviors is important to prevent or suppress these oscillations. Active thermoacoustic coupling in practical combustors is caused primarily by two approaches: inherent turbulent fluctuations and the flame response to acoustic waves. Turbulent fluctuations are generally characterized by random noise. This paper experimentally expands on previous analytic studies regarding the influence of colored disturbances on the thermoacoustic response near the supercritical bifurcation point. Therein, a laboratory-scale Rijke-type thermoacoustic system is established, and both supercritical and subcritical bifurcations are observed. Then, Ornstein–Uhlenbeck (OU)-type external colored noise is introduced near the supercritical bifurcation point, and the effects of the corresponding correlation time τc and noise intensity D are studied. The experimental results show that these variables of the colored noise significantly influence the dynamics of thermoacoustic oscillations in terms of the most probable amplitude and autocorrelation properties. A resonance-like behavior is observed as the noise intensity or the autocorrelation time of the colored noise is continuously varied, which means that the coherent resonance occurs in the thermoacoustic system. Finally, when the system is configured closer to the stability boundary, the extent of the coherence motion is intensified in the stochastic system response. Meanwhile, the signal-to-noise ratios (SNRs) of the colored-noise-induced response are found to become more distinguished, the optimal colored noise intensity decreases, and the optimal autocorrelation time increases. These findings provide valuable guidance to predict the onset of thermoacoustic instabilities. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

26 pages, 11088 KiB  
Article
Thermoacoustic Combustion Stability Analysis of a Bluff Body-Stabilized Burner Fueled by Methane–Air and Hydrogen–Air Mixtures
by Vito Ceglie, Michele Stefanizzi, Tommaso Capurso, Francesco Fornarelli and Sergio M. Camporeale
Energies 2023, 16(7), 3272; https://doi.org/10.3390/en16073272 - 6 Apr 2023
Cited by 3 | Viewed by 3354
Abstract
Hydrogen can play a key role in the gradual transition towards a full decarbonization of the combustion sector, e.g., in power generation. Despite the advantages related to the use of this carbon-free fuel, there are still several challenging technical issues that must be [...] Read more.
Hydrogen can play a key role in the gradual transition towards a full decarbonization of the combustion sector, e.g., in power generation. Despite the advantages related to the use of this carbon-free fuel, there are still several challenging technical issues that must be addressed such as the thermoacoustic instability triggered by hydrogen. Given that burners are usually designed to work with methane or other fossil fuels, it is important to investigate their thermoacoustic behavior when fueled by hydrogen. In this framework, the present work aims to propose a methodology which combines Computational Fluid Dynamics CFD (3D Reynolds-Averaged Navier-Stokes (RANS)) and Finite Element Method (FEM) approaches in order to investigate the fluid dynamic and the thermoacoustic behavior introduced by hydrogen in a burner (a lab-scale bluff body stabilized burner) designed to work with methane. The case of CH4-air mixture was used for the validation against experimental results and benchmark CFD data available in the literature. Numerical results obtained from CFD simulations, namely thermofluidodynamic properties and flame characteristics (i.e., time delay and heat release rate) are used to evaluate the effects of the fuel change on the Flame Response Function to the acoustic perturbation by means of a FEM approach. As results, in the H2-air mixture case, the time delay decreases and heat release rate increases with respect to the CH4-air mixture. A study on the Rayleigh index was carried out in order to analyze the influence of H2-air mixture on thermoacoustic instability of the burner. Finally, an analysis of both frequency and growth rate (GR) on the first four modes was carried out by comparing the two mixtures. In the H2-air case the modes are prone to become more unstable with respect to the same modes of the case fueled by CH4-air, due to the change in flame topology and variation of the heat release rate and time delay fields. Full article
Show Figures

Figure 1

13 pages, 2910 KiB  
Article
Performance Enhancement of Opened Resonance Photoacoustic Cells Based on Three Dimensional Topology Optimization
by Zihao Tang, Wenjun Ni, Zehao Li, Jin Hou, Shaoping Chen, Perry Ping Shum and Chunyong Yang
Photonics 2021, 8(9), 380; https://doi.org/10.3390/photonics8090380 - 9 Sep 2021
Cited by 5 | Viewed by 2582
Abstract
Photoacoustic (PA) spectroscopy techniques enable the detection of trace substances. However, lower threshold detection requirements are increasingly common in practical applications. Thus, we propose a systematic geometry topology optimization approach on a PA cell to enhance the intensity of its detection signal. The [...] Read more.
Photoacoustic (PA) spectroscopy techniques enable the detection of trace substances. However, lower threshold detection requirements are increasingly common in practical applications. Thus, we propose a systematic geometry topology optimization approach on a PA cell to enhance the intensity of its detection signal. The model of topology optimization and pressure acoustics in the finite element method was exploited to construct a PA cell and then acquire the optimal structure. In the assessment, a thermo-acoustic model was constructed to properly simulate the frequency response over the range of 0–70 kHz and the temperature field distribution. The simulation results revealed that the acoustic gain of the optimized cell was 2.7 and 1.3 times higher than conventional cells near 25 and 52 kHz, respectively. Moreover, the optimized PA cell achieved a lower threshold detection over a wide frequency range. Ultimately, this study paves a new way for designing and optimizing the geometry of multifarious high-sensitivity PA sensors. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

15 pages, 3791 KiB  
Article
Energy and Efficiency Evaluation of Feedback Branch Design in Thermoacoustic Stirling-Like Engines
by Carmen Iniesta, José Luis Olazagoitia, Jordi Vinolas and Jaime Gros
Energies 2019, 12(20), 3867; https://doi.org/10.3390/en12203867 - 12 Oct 2019
Cited by 2 | Viewed by 2600
Abstract
Stirling-like thermoacoustic generators are external combustion engines that provide useful acoustic power in the absence of moving parts with high reliability and respect for the environment. The study of these systems involves a great complexity since the parameters that describe them, besides being [...] Read more.
Stirling-like thermoacoustic generators are external combustion engines that provide useful acoustic power in the absence of moving parts with high reliability and respect for the environment. The study of these systems involves a great complexity since the parameters that describe them, besides being numerous, present a high degree of coupling between them. This implies a great difficulty in characterizing the effects of any parametric variation on the performance of these devices. Due to the huge amount of data to analyze, the experiments and simulations required to address the problem involve high investments in time and resources, sometimes unaffordable. This article presents, how a sensitivity analysis applying the response surface methodology can be applied to optimize the feedback branch of a thermoacoustic Stirling-like engine. The proposed study is made by evaluating the comparative relevance of seven design variables. The dimensional reduction process identifies three significant factors: the frequency of operation, the internal diameter of compliance, and the inertance. Subsequently, the Response Surface Methodology is applied to assess the interaction effects of these three design parameters on the efficiency of the thermoacoustic engine, and an improvement of 6% has been achieved. The enhanced values given by the response surface methodology are validated using the DeltaEC software. Full article
(This article belongs to the Special Issue Internal Combustion Engine Waste Heat Recovery)
Show Figures

Figure 1

Back to TopTop