Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = tau particle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 8117 KiB  
Article
Induced Microglial-like Cells Derived from Familial and Sporadic Alzheimer’s Disease Peripheral Blood Monocytes Show Abnormal Phagocytosis and Inflammatory Response to PSEN1 E280A Cholinergic-like Neurons
by Viviana Soto-Mercado, Miguel Mendivil-Perez, Carlos Velez-Pardo and Marlene Jimenez-Del-Rio
Int. J. Mol. Sci. 2025, 26(15), 7162; https://doi.org/10.3390/ijms26157162 - 24 Jul 2025
Abstract
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in [...] Read more.
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in a 15-day differentiation process to investigate the effect of bolus addition of Aβ42, PSEN1 E280A cholinergic-like neuron (ChLN)-derived culture supernatants, and PSEN1 E280A ChLNs on wild type (WT) iMG, PSEN1 E280A iMG, and sporadic Alzheimer’s disease (SAD) iMG. We found that WT iMG cells, when challenged with non-cellular (e.g., lipopolysaccharide, LPS) or cellular (e.g., Aβ42, PSEN1 E280A ChLN-derived culture supernatants) microenvironments, closely resemble primary human microglia in terms of morphology (resembling an “amoeboid-like phenotype”), expression of surface markers (Ionized calcium-binding adapter molecule 1, IBA-1; transmembrane protein 119, TMEM119), phagocytic ability (high pHrodo™ Red E. coli BioParticles™ phagocytic activity), immune metabolism (i.e., high generation of reactive oxygen species, ROS), increase in mitochondrial membrane potential (ΔΨm), response to ATP-induced transient intracellular Ca2+ influx, cell polarization (cluster of differentiation 68 (CD68)/CD206 ratio: M1 phenotype), cell migration activity according to the scratch wound assay, and especially in their inflammatory response (secretion of cytokine interleukin-6, IL-6; Tumor necrosis factor alpha, TNF-α). We also found that PSEN1 E280A and SAD iMG are physiologically unresponsive to ATP-induced Ca2+ influx, have reduced phagocytic activity, and diminished expression of Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) protein, but when co-cultured with PSEN1 E280A ChLNs, iMG shows an increase in pro-inflammatory phenotype (M1) and secretes high levels of cytokines IL-6 and TNF-α. As a result, PSEN1 E280A and SAD iMG induce apoptosis in PSEN1 E280A ChLNs as evidenced by abnormal phosphorylation of protein TAU at residue T205 and cleaved caspase 3 (CC3). Taken together, these results suggest that PSEN1 E280A ChLNs initiate a vicious cycle between damaged neurons and M1 phenotype microglia, resulting in excessive ChLN death. Our findings provide a suitable platform for the exploration of novel therapeutic approaches for the fight against FAD. Full article
(This article belongs to the Special Issue Role of Glia in Human Health and Disease)
Show Figures

Figure 1

19 pages, 1132 KiB  
Review
The Interplay Between Exosomes and Gut Microbiota in Neuroinflammation: A New Frontier in Alzheimer’s Disease
by Sara Uceda, Manuel Reiriz, Víctor Echeverry-Alzate and Ana Isabel Beltrán-Velasco
Int. J. Mol. Sci. 2025, 26(12), 5828; https://doi.org/10.3390/ijms26125828 - 18 Jun 2025
Viewed by 741
Abstract
Alzheimer’s disease (AD) is a complex neurodegenerative condition that is characterized by the accumulation of amyloid-β, the hyperphosphorylation of tau, and persistent neuroinflammation. However, these hallmarks alone do not fully capture the intricacies of AD pathology, thus necessitating the investigation of emerging mechanisms [...] Read more.
Alzheimer’s disease (AD) is a complex neurodegenerative condition that is characterized by the accumulation of amyloid-β, the hyperphosphorylation of tau, and persistent neuroinflammation. However, these hallmarks alone do not fully capture the intricacies of AD pathology, thus necessitating the investigation of emerging mechanisms and innovative tools. Exosomes (nanoscale vesicles involved in cell communication and immune modulation) have emerged as pivotal cellular vehicles due to their dual role—both in the propagation of pathological proteins and the regulation of inflammatory responses. Furthermore, these vesicles have been demonstrated to play a crucial role in the mediation of the effects of microbiota-derived metabolites and the reflection of systemic influences such as dysbiosis, thereby establishing a link between the gut–brain axis and the progression of AD. A comprehensive narrative literature review was conducted using the following databases: ScienceDirect, Scopus, Wiley, Web of Science, Medline, and PubMed, covering studies published between 2015 and 2025. Inclusion and exclusion criteria were established to select research addressing exosomal biogenesis, their functional and diagnosis role, their therapeutic potential, and the emerging evidence on microbiota–exosome interplay in Alzheimer’s disease. Exosomes have been identified as integral mediators of intercellular communication, reflecting the molecular state of the central nervous system. These particles have been shown to promote the propagation of pathological proteins, modulate neuroinflammatory responses, and serve as non-invasive biomarkers due to their detectability in peripheral fluids. Advances in exosomal engineering and microbiome-based interventions underscore the potential for targeting systemic and CNS-specific mechanisms to develop integrative therapies for AD. Exosomes present a promising approach for the early diagnosis and personalized treatment of Alzheimer’s disease. However, methodological challenges and ongoing controversies, including those related to the influence of systemic factors such as dysbiosis, necessitate multidisciplinary research to optimize and standardize these strategies. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 2336 KiB  
Article
On the Properties of Styrene–Maleic Acid Copolymer–Lipid Nanoparticles: A Solution NMR Perspective
by Vladislav V. Motov, Erik F. Kot, Svetlana O. Kislova, Eduard V. Bocharov, Alexander S. Arseniev, Ivan A. Boldyrev, Sergey A. Goncharuk and Konstantin S. Mineev
Polymers 2024, 16(21), 3009; https://doi.org/10.3390/polym16213009 - 26 Oct 2024
Cited by 1 | Viewed by 1710
Abstract
The production of functionally active membrane proteins (MPs) in an adequate membrane environment is a key step in structural biology. Polymer–lipid particles based on styrene and maleic acid (SMA) represent a promising type of membrane mimic, as they can extract properly folded MPs [...] Read more.
The production of functionally active membrane proteins (MPs) in an adequate membrane environment is a key step in structural biology. Polymer–lipid particles based on styrene and maleic acid (SMA) represent a promising type of membrane mimic, as they can extract properly folded MPs directly from their native lipid environment. However, the original SMA polymer is sensitive to acidic pH levels, which has led to the development of several modifications: SMA-EA, SMA-QA, and others. Here, we introduce a novel SMA derivative with a negatively charged taurine moiety, SMA-tau, and investigate the formation and characteristics of lipid–SMA-EA and lipid–SMA-tau membrane-mimicking particles. Our findings demonstrate that both polymers can form nanodiscs with a patch of lipid bilayer that can undergo phase transitions at temperatures close to those of the lipid bilayer membranes. Finally, we discuss the potential applications of these SMAs for NMR spectroscopy. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers II)
Show Figures

Graphical abstract

18 pages, 2200 KiB  
Article
Improved Expression of Aggregation-Prone Tau Proteins Using a Spidroin-Derived Solubility Tag
by Kevin Muwonge, Bedri Yaman, Attila Mészáros, Giorgio Russo, Alexander Volkov and Peter Tompa
Separations 2024, 11(7), 198; https://doi.org/10.3390/separations11070198 - 25 Jun 2024
Viewed by 3452
Abstract
Tauopathies, a group of neurodegenerative disorders, are characterized by the abnormal aggregation of microtubule-associated Tau proteins in neurons and glial cells. The process of Tau proteins transitioning from soluble, intrinsically disordered monomers to disease-associated aggregates is still unclear. Investigating these molecular mechanisms requires [...] Read more.
Tauopathies, a group of neurodegenerative disorders, are characterized by the abnormal aggregation of microtubule-associated Tau proteins in neurons and glial cells. The process of Tau proteins transitioning from soluble, intrinsically disordered monomers to disease-associated aggregates is still unclear. Investigating these molecular mechanisms requires the reconstitution of such processes in cellular and in vitro models using recombinant proteins at high purity and yield. However, the production of phase-separating or aggregation-prone recombinant proteins like Tau’s hydrophobic-rich domains or disease mutation-carrying variants on a large scale is highly challenging due to their limited solubility. To overcome this challenge, we have developed an improved strategy for expressing and purifying recombinant Tau proteins using the major ampullate spidroin-derived solubility tag (MaSp-NT*). This approach involves using NT* as a fusion tag to enhance the solubility and stability of expressed proteins by forming micelle-like particles within the cytosol of E. coli cells. We found that fusion with the NT* tag significantly increased the solubility and yield of highly hydrophobic and/or aggregation-prone Tau constructs. Our purification method for NT* fusion proteins yielded up to twenty-fold higher amounts than proteins purified using our novel tandem-tag (6xHis-SUMO-Tau-Heparin) purification system. This enhanced expression and yield were demonstrated with full-length Tau (hT40/Tau441), its particularly aggregation-prone repeat domain (Tau-MTBR), and Frontotemporal dementia (FTD)-associated mutant (Tau-P301L). These advancements offer promising avenues for the production of large quantities of Tau proteins suitable for in vitro experimental techniques such as nuclear magnetic resonance (NMR) spectroscopy without the need for a boiling step, bringing us closer to effective treatments for tauopathies. Full article
(This article belongs to the Special Issue Peptide Synthesis, Separation and Purification)
Show Figures

Figure 1

13 pages, 2822 KiB  
Article
Rpt5-Derived Analogs Stimulate Human Proteasome Activity in Cells and Degrade Proteins Forming Toxic Aggregates in Age-Related Diseases
by Katarzyna Cekała, Karolina Trepczyk, Julia Witkowska, Elżbieta Jankowska and Ewa Wieczerzak
Int. J. Mol. Sci. 2024, 25(9), 4663; https://doi.org/10.3390/ijms25094663 - 25 Apr 2024
Cited by 3 | Viewed by 1683
Abstract
Aging and age-related diseases are associated with a decline in the capacity of protein turnover. Intrinsically disordered proteins, as well as proteins misfolded and oxidatively damaged, prone to aggregation, are preferentially digested by the ubiquitin-independent proteasome system (UIPS), a major component of which [...] Read more.
Aging and age-related diseases are associated with a decline in the capacity of protein turnover. Intrinsically disordered proteins, as well as proteins misfolded and oxidatively damaged, prone to aggregation, are preferentially digested by the ubiquitin-independent proteasome system (UIPS), a major component of which is the 20S proteasome. Therefore, boosting 20S activity constitutes a promising strategy to counteract a decrease in total proteasome activity during aging. One way to enhance the proteolytic removal of unwanted proteins appears to be the use of peptide-based activators of the 20S. In this study, we synthesized a series of peptides and peptidomimetics based on the C-terminus of the Rpt5 subunit of the 19S regulatory particle. Some of them efficiently stimulated human 20S proteasome activity. The attachment of the cell-penetrating peptide TAT allowed them to penetrate the cell membrane and stimulate proteasome activity in HEK293T cells, which was demonstrated using a cell-permeable substrate of the proteasome, TAS3. Furthermore, the best activator enhanced the degradation of aggregation-prone α-synuclein and Tau-441. The obtained compounds may therefore have the potential to compensate for the unbalanced proteostasis found in aging and age-related diseases. Full article
(This article belongs to the Special Issue Proteasome Activity Regulation)
Show Figures

Figure 1

18 pages, 3288 KiB  
Article
Phosphoproteome Microarray Analysis of Extracellular Particles as a Tool to Explore Novel Biomarker Candidates for Alzheimer’s Disease
by Tânia Soares Martins, Steven Pelech, Maria Ferreira, Beatriz Pinho, Kevin Leandro, Luís Pereira de Almeida, Benedict Breitling, Niels Hansen, Hermann Esselmann, Jens Wiltfang, Odete A. B. da Cruz e Silva and Ana Gabriela Henriques
Int. J. Mol. Sci. 2024, 25(3), 1584; https://doi.org/10.3390/ijms25031584 - 27 Jan 2024
Cited by 2 | Viewed by 2421
Abstract
Phosphorylation plays a key role in Alzheimer’s disease (AD) pathogenesis, impacting distinct processes such as amyloid-beta (Aβ) peptide production and tau phosphorylation. Impaired phosphorylation events contribute to senile plaques and neurofibrillary tangles’ formation, two major histopathological hallmarks of AD. Blood-derived extracellular particles (bdEP) [...] Read more.
Phosphorylation plays a key role in Alzheimer’s disease (AD) pathogenesis, impacting distinct processes such as amyloid-beta (Aβ) peptide production and tau phosphorylation. Impaired phosphorylation events contribute to senile plaques and neurofibrillary tangles’ formation, two major histopathological hallmarks of AD. Blood-derived extracellular particles (bdEP) can represent a disease-related source of phosphobiomarker candidates, and hence, in this pilot study, bdEP of Control and AD cases were analyzed by a targeted phosphoproteomics approach using a high-density microarray that featured at least 1145 pan-specific and 913 phosphosite-specific antibodies. This approach, innovatively applied to bdEP, allowed the identification of 150 proteins whose expression levels and/or phosphorylation patterns were significantly altered across AD cases. Gene Ontology enrichment and Reactome pathway analysis unraveled potentially relevant molecular targets and disease-associated pathways, and protein-protein interaction networks were constructed to highlight key targets. The discriminatory value of both the total proteome and the phosphoproteome was evaluated by univariate and multivariate approaches. This pilot experiment supports that bdEP are enriched in phosphotargets relevant in an AD context, holding value as peripheral biomarker candidates for disease diagnosis. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases—4th Edition)
Show Figures

Figure 1

30 pages, 2176 KiB  
Review
APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their Alzheimer Continuum and Have a High Risk of Suicide in PM2.5 Polluted Cities
by Lilian Calderón-Garcidueñas, Jacqueline Hernández-Luna, Mario Aiello-Mora, Rafael Brito-Aguilar, Pablo A. Evelson, Rodolfo Villarreal-Ríos, Ricardo Torres-Jardón, Alberto Ayala and Partha S. Mukherjee
Biomolecules 2023, 13(6), 927; https://doi.org/10.3390/biom13060927 - 31 May 2023
Cited by 11 | Viewed by 6407
Abstract
This Review emphasizes the impact of APOE4—the most significant genetic risk factor for Alzheimer’s disease (AD)—on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles’ effects in humans to understand their impact from conception through [...] Read more.
This Review emphasizes the impact of APOE4—the most significant genetic risk factor for Alzheimer’s disease (AD)—on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles’ effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden—as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs—in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aβ42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer’s Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aβ42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer’s Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported. Full article
(This article belongs to the Special Issue Biomarkers and Risk Factors for Neurodegenerative Disease)
Show Figures

Figure 1

17 pages, 3803 KiB  
Article
A Mixture of Artemisia argyi and Saururus chinensis Improves PM2.5-Induced Cognitive Dysfunction by Regulating Oxidative Stress and Inflammatory Response in the Lung and Brain
by Jin-Yong Kang, Jong-Min Kim, Seon-Kyeong Park, Hyo-Lim Lee and Ho-Jin Heo
Plants 2023, 12(6), 1230; https://doi.org/10.3390/plants12061230 - 8 Mar 2023
Cited by 3 | Viewed by 2454
Abstract
This study was performed to investigate the improving effect of a mixture of Artemisia argyi and Saururus chinensis (AASC) on cognitive dysfunction in mice with long-term exposure to fine particles (particulate matter smaller than 2.5 µm: PM2.5). The main compounds of [...] Read more.
This study was performed to investigate the improving effect of a mixture of Artemisia argyi and Saururus chinensis (AASC) on cognitive dysfunction in mice with long-term exposure to fine particles (particulate matter smaller than 2.5 µm: PM2.5). The main compounds of AASC were identified as dicaffeoylquinic acid isomers of A. argyi and a quercetin-3-glucoside of S. chinesis. As a result of behavioral tests for the evaluation of cognitive function, it was confirmed that cognitive dysfunction was induced in the PM2.5 exposure group, and a tendency to improve in the AASC group was confirmed. Increased oxidative stress and inflammatory response and mitochondrial dysfunction were observed in the brain and lung tissues of the PM group. Damage to the brain and lung affected the accumulation of amyloid beta (Aβ) in the brain. It increased Aβ and induced the cholinergic dysfunction, hyperphosphorylation of the tau protein, and activation of apoptosis, leading to cognitive impairment. However, AASC suppressed brain and lung oxidative stress and inflammation, thereby suppressing brain Aβ expression. Consequently, this study shows the potential that a steady intake of plant resources with antioxidant and anti-inflammatory activity could prevent cognitive impairment caused by PM2.5. Full article
(This article belongs to the Special Issue Pharmacology and Toxicology of Plants and Their Constituents)
Show Figures

Figure 1

30 pages, 4422 KiB  
Article
AtGSTU19 and AtGSTU24 as Moderators of the Response of Arabidopsis thaliana to Turnip mosaic virus
by Katarzyna Otulak-Kozieł, Edmund Kozieł, Edit Horváth and Jolán Csiszár
Int. J. Mol. Sci. 2022, 23(19), 11531; https://doi.org/10.3390/ijms231911531 - 29 Sep 2022
Cited by 14 | Viewed by 2948
Abstract
Plants produce glutathione as a response to the intercellular redox state. Glutathione actively participates in the reactive oxygen species (ROS)-dependent signaling pathway, especially under biotic stress conditions. Most of the glutathione S-transferases (GSTs) are induced in cells during the defense response of plants [...] Read more.
Plants produce glutathione as a response to the intercellular redox state. Glutathione actively participates in the reactive oxygen species (ROS)-dependent signaling pathway, especially under biotic stress conditions. Most of the glutathione S-transferases (GSTs) are induced in cells during the defense response of plants not only through highly specific glutathione-binding abilities but also by participating in the signaling function. The tau class of GSTs has been reported to be induced as a response under stress conditions. Although several studies have focused on the role of the tau class of GSTs in plant–pathogen interactions, knowledge about their contribution to the response to virus inoculation is still inadequate. Therefore, in this study, the response of Atgstu19 and Atgstu24 knockout mutants to mechanical inoculation of Turnip mosaic virus (TuMV) was examined. The systemic infection of TuMV was more dynamically promoted in Atgstu19 mutants than in wild-type (Col-0) plants, suggesting the role of GSTU19 in TuMV resistance. However, Atgstu24 mutants displayed virus limitation and downregulation of the relative expression of TuMV capsid protein, accompanied rarely by TuMV particles only in vacuoles, and ultrastructural analyses of inoculated leaves revealed the lack of virus cytoplasmic inclusions. These findings indicated that Atgstu24 mutants displayed a resistance-like reaction to TuMV, suggesting that GSTU24 may suppress the plant resistance. In addition, these findings confirmed that GSTU1 and GSTU24 are induced and contribute to the susceptible reaction to TuMV in the Atgstu19–TuMV interaction. However, the upregulation of GSTU19 and GSTU13 highly correlated with virus limitation in the resistance-like reaction in the Atgstu24–TuMV interaction. Furthermore, the highly dynamic upregulation of GST and glutathione reductase (GR) activities resulted in significant induction (between 1 and 14 days post inoculation [dpi]) of the total glutathione pool (GSH + GSSG) in response to TuMV, which was accompanied by the distribution of active glutathione in plant cells. On the contrary, in Atgstu19, which is susceptible to TuMV interaction, upregulation of GST and GR activity only up to 7 dpi symptom development was reported, which resulted in the induction of the total glutathione pool between 1 and 3 dpi. These observations indicated that GSTU19 and GSTU24 are important factors in modulating the response to TuMV in Arabidopsis thaliana. Moreover, it was clear that glutathione is an important component of the regulatory network in resistance and susceptible response of A. thaliana to TuMV. These results help achieve a better understanding of the mechanisms regulating the Arabidopsis–TuMV pathosystem. Full article
Show Figures

Figure 1

26 pages, 9348 KiB  
Article
Novel Luteolin-Loaded Chitosan Decorated Nanoparticles for Brain-Targeting Delivery in a Sporadic Alzheimer’s Disease Mouse Model: Focus on Antioxidant, Anti-Inflammatory, and Amyloidogenic Pathways
by Haidy Abbas, Nesrine S El Sayed, Nancy Abdel Hamid Abou Youssef, Passent M. E. Gaafar, Mohamed R. Mousa, Ahmed M. Fayez and Manal A Elsheikh
Pharmaceutics 2022, 14(5), 1003; https://doi.org/10.3390/pharmaceutics14051003 - 6 May 2022
Cited by 61 | Viewed by 4403
Abstract
Preparation and evaluation of a non-invasive intranasal luteolin delivery for the management of cognitive dysfunction in Alzheimer’s disease (AD) using novel chitosan decorated nanoparticles. Development of luteolin-loaded chitosomes was followed by full in vitro characterization. In vivo efficacy was evaluated using a sporadic [...] Read more.
Preparation and evaluation of a non-invasive intranasal luteolin delivery for the management of cognitive dysfunction in Alzheimer’s disease (AD) using novel chitosan decorated nanoparticles. Development of luteolin-loaded chitosomes was followed by full in vitro characterization. In vivo efficacy was evaluated using a sporadic Alzheimer’s disease (SAD) animal model via intracerebroventricular injection of 3 mg/kg streptozotocin (ICV-STZ). Treatment groups of luteolin suspension and chitosomes (50 mg/kg) were then intranasally administered after 5 h of ICV-STZ followed by everyday administration for 21 consecutive days. Behavioral, histological, immunohistochemical, and biochemical studies were conducted. Chitosomes yielded promising quality attributes in terms of particle size (PS) (412.8 ± 3.28 nm), polydispersity index (PDI) (0.378 ± 0.07), Zeta potential (ZP) (37.4 ± 2.13 mv), and percentage entrapment efficiency (EE%) (86.6 ± 2.05%). Behavioral findings showed obvious improvement in the acquisition of short-term and long-term spatial memory. Furthermore, histological evaluation revealed an increased neuronal survival rate with a reduction in the number of amyloid plaques. Biochemical results showed improved antioxidant effects and reduced pro-inflammatory mediators’ levels. In addition, a suppression by half was observed in the levels of both Aβ aggregation and hyperphosphorylated-tau protein in comparison to the model control group which in turn confirmed the capability of luteolin-loaded chitosomes (LUT-CHS) in attenuating the pathological changes of AD. The prepared nanoparticles are considered a promising safe, effective, and non-invasive nanodelivery system that improves cognitive function in SAD albino mice as opposed to luteolin suspension. Full article
(This article belongs to the Special Issue Liposomes for Transmucosal Drug Delivery)
Show Figures

Figure 1

27 pages, 6644 KiB  
Article
A Brain-Targeted Approach to Ameliorate Memory Disorders in a Sporadic Alzheimer’s Disease Mouse Model via Intranasal Luteolin-Loaded Nanobilosomes
by Manal A. Elsheikh, Yasmin A. El-Feky, Majid Mohammad Al-Sawahli, Merhan E. Ali, Ahmed M. Fayez and Haidy Abbas
Pharmaceutics 2022, 14(3), 576; https://doi.org/10.3390/pharmaceutics14030576 - 5 Mar 2022
Cited by 40 | Viewed by 3685
Abstract
Impaired memory and cognitive function are the main features of Alzheimer’s disease (AD). Unfortunately, currently available treatments cannot cure or delay AD progression. Moreover, the blood–brain barrier hampers effective delivery of treatment to the brain. Therefore, we aimed to evaluate the impact of [...] Read more.
Impaired memory and cognitive function are the main features of Alzheimer’s disease (AD). Unfortunately, currently available treatments cannot cure or delay AD progression. Moreover, the blood–brain barrier hampers effective delivery of treatment to the brain. Therefore, we aimed to evaluate the impact of intranasally delivered luteolin on AD using bile-salt-based nano-vesicles (bilosomes). Different bilosomes were prepared using 23-factorial design. The variables were defined by the concentration of surfactant, the molar ratio of cholesterol:phospholipid, and the concentration of bile salt. Results demonstrated optimized luteolin-loaded bilosomes with particle size (153.2 ± 0.98 nm), zeta potential (−42.8 ± 0.24 mV), entrapment efficiency% (70.4 ± 0.77%), and % drug released after 8 h (80.0 ± 1.10%). In vivo experiments were conducted on an AD mouse model via intracerebroventricular injection of 3 mg/kg streptozotocin. We conducted behavioral, biochemical marker, histological, and immune histochemistry assays after administering a luteolin suspension or luteolin bilosomes (50 mg/kg) intranasally for 21 consecutive days. Luteolin bilosomes improved short-term and long-term spatial memory. They also exhibited antioxidant properties and reduced levels of proinflammatory mediators. They also suppressed both amyloid β aggregation and hyperphosphorylated Tau protein levels in the hippocampus. In conclusion, luteolin bilosomes are an effective, safe, and non-invasive approach with superior cognitive function capabilities compared to luteolin suspension. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

21 pages, 5122 KiB  
Article
Effect of Pluronic P103 Concentration on the Simple Synthesis of Ag and Au Nanoparticles and Their Application in Anatase-TiO2 Decoration for Its Use in Photocatalysis
by Frida Karem Rivas-Moreno, Adan Luna-Flores, Daniel Cruz-González, Valeria Jordana González-Coronel, Manuel Sánchez-Cantú, José Luis Rodríguez-López, Uriel Caudillo-Flores and Nancy Tepale
Molecules 2022, 27(1), 127; https://doi.org/10.3390/molecules27010127 - 26 Dec 2021
Cited by 3 | Viewed by 3400
Abstract
Silver and gold nanoparticles were synthesized under environmentally-friendly reaction conditions by using a biodegradable copolymer and water as a solvent. The triblock copolymer Pluronic P103 was utilized as a stabilizing agent or soft template to produce Ag and Au nanoparticles (NPs) of different [...] Read more.
Silver and gold nanoparticles were synthesized under environmentally-friendly reaction conditions by using a biodegradable copolymer and water as a solvent. The triblock copolymer Pluronic P103 was utilized as a stabilizing agent or soft template to produce Ag and Au nanoparticles (NPs) of different sizes. Moreover, in the synthesis of Au NPs, the polymer acted as a reducing agent, decreasing the number of reagents used and consequently the residues produced, hence, rendering the procedure less complicated. It was observed that as the concentration of the polymer increased, the size of the metallic NPs augmented as well. However, AgNPs and AuNPs prepared with 1 and 10 wt% Pluronic P103, respectively, showed a significant decrease in particle size due to the presence of polymeric soft templates. The hybrid materials (metal/polymer) were characterized by UV-Vis spectroscopy, DLS, and TEM. The pre-synthesized nanoparticles were employed to decorate anatase-TiO2, and the composites were characterized by DRS, XRD, BET surface area measurements, the TEM technique with the EDS spectrum, and XPS spectroscopy to demonstrate NPs superficial incorporation. Finally, methylene blue was used as a probe molecule to evidence the effect of NPs decoration in its photocatalytic degradation. The results showed that the presence of the NPs positively affected methylene blue degradation, achieving 96% and 97% removal by utilizing TAg0.1 and TAu10, respectively, in comparison to bare anatase-TiO2 (77%). Full article
Show Figures

Figure 1

23 pages, 17196 KiB  
Article
The Tragedy of Alzheimer’s Disease: Towards Better Management via Resveratrol-Loaded Oral Bilosomes
by Haidy Abbas, Heba A. Gad, Mohamed A. Khattab and Mai Mansour
Pharmaceutics 2021, 13(10), 1635; https://doi.org/10.3390/pharmaceutics13101635 - 7 Oct 2021
Cited by 40 | Viewed by 3757
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease where oxidative stress plays a major role as a key pathologic factor. The study aims to develop resveratrol (RES)-loaded bilosomes for oral use, aiming to enhance RES bioavailability. RES-loaded bilosomes were prepared using the thin-film hydration [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disease where oxidative stress plays a major role as a key pathologic factor. The study aims to develop resveratrol (RES)-loaded bilosomes for oral use, aiming to enhance RES bioavailability. RES-loaded bilosomes were prepared using the thin-film hydration technique. The effect of different formulation variables viz. the number of extrusion cycles, drug concentration and the effect of pH of the medium and cholesterol addition on the physicochemical properties of the prepared bilosomes was investigated. Results revealed the successful entrapment of RES into bilosomes. An optimized formula was selected, showing the lowest particle size (189 ± 2.14), acceptable PDI (0.116) and entrapment efficiency (76.2 ± 1.36). In vivo studies on a streptozotocin-induced animal model of AD showed the preeminence of bilosomes over traditional drug suspension to enhance mice memory via Y-maze and Morris water maze tests. Moreover, mice treated with the optimized formula exhibited decreased COX2, IL-6, amyloid-beta peptide and Tau protein levels compared to the drug suspension. Immuno-histochemical analysis revealed a significant decrease of glial fibrillary acidic protein values and microglial cell count in mice treated with bilosomes. Finally, it could be advocated that RES-loaded bilosomes could be a promising drug delivery system to control AD. Full article
Show Figures

Figure 1

12 pages, 7013 KiB  
Article
Uptake of Polyelectrolyte Functionalized Upconversion Nanoparticles by Tau-Aggregated Neuron Cells
by Yo Han Song, Ranjit De and Kang Taek Lee
Pharmaceutics 2021, 13(1), 102; https://doi.org/10.3390/pharmaceutics13010102 - 14 Jan 2021
Cited by 10 | Viewed by 3383
Abstract
Tauopathy is the aggregation phenomenon of tau proteins and associated with neurodegenerative diseases. It metastasizes via the transfer of tau aggregates to adjacent neuron cells; however, the mechanism has not yet been fully understood. Moreover, if the materials used for designing drug delivery [...] Read more.
Tauopathy is the aggregation phenomenon of tau proteins and associated with neurodegenerative diseases. It metastasizes via the transfer of tau aggregates to adjacent neuron cells; however, the mechanism has not yet been fully understood. Moreover, if the materials used for designing drug delivery system to treat such neurodegenerative diseases do not undergo biodegradation or exocytosis but remains in cells or tissues, they raise concerns about their possible negative impacts. In this study, the uptake and delivery mechanisms of nano-sized carriers in tau aggregated neuron cells were investigated employing polyelectrolyte-functionalized upconversion nanoparticles (UCNPs) of diameter ~100 nm. Investigation through bioimaging was carried out by irradiating the particles with near-infrared light. Here, forskolin and okadaic acid were employed to induce tau aggregation into healthy neuron cells. It was noticed that the tau-aggregated neuron cells, when treated with relatively large sized UCNPs, showed uptake efficiency similar to that of normal neuron cells however their intracellular transport and exocytosis were impacted, and most of the carriers remained accumulated around lysosome. This demonstrates that metastasis mechanisms of tauopathy can get influenced by the size of carriers and are to be considered during their pharmacokinetic studies which is often not addressed in many drug delivery studies. Full article
(This article belongs to the Special Issue Polymer Nanoparticles for Delivery of Therapeutic Proteins)
Show Figures

Graphical abstract

32 pages, 7416 KiB  
Article
The Proteasome Activators Blm10/PA200 Enhance the Proteasomal Degradation of N-Terminal Huntingtin
by Azzam Aladdin, Yanhua Yao, Ciyu Yang, Günther Kahlert, Marvi Ghani, Nikolett Király, Anita Boratkó, Karen Uray, Gunnar Dittmar and Krisztina Tar
Biomolecules 2020, 10(11), 1581; https://doi.org/10.3390/biom10111581 - 20 Nov 2020
Cited by 12 | Viewed by 5397
Abstract
The Blm10/PA200 family of proteasome activators modulates the peptidase activity of the core particle (20S CP). They participate in opening the 20S CP gate, thus facilitating the degradation of unstructured proteins such as tau and Dnm1 in a ubiquitin- and ATP-independent manner. Furthermore, [...] Read more.
The Blm10/PA200 family of proteasome activators modulates the peptidase activity of the core particle (20S CP). They participate in opening the 20S CP gate, thus facilitating the degradation of unstructured proteins such as tau and Dnm1 in a ubiquitin- and ATP-independent manner. Furthermore, PA200 also participates in the degradation of acetylated histones. In our study, we use a combination of yeast and human cell systems to investigate the role of Blm10/PA200 in the degradation of N-terminal Huntingtin fragments (N-Htt). We demonstrate that the human PA200 binds to N-Htt. The loss of Blm10 in yeast or PA200 in human cells results in increased mutant N-Htt aggregate formation and elevated cellular toxicity. Furthermore, Blm10 in vitro accelerates the proteasomal degradation of soluble N-Htt. Collectively, our data suggest N-Htt as a new substrate for Blm10/PA200-proteasomes and point to new approaches in Huntington’s disease (HD) research. Full article
(This article belongs to the Special Issue Regulating Proteasome Activity)
Show Figures

Figure 1

Back to TopTop