Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = tap water consumer ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1996 KiB  
Article
Growth Response of Non-Conventional Yeasts on Sugar-Rich Media: Part 2: Citric Acid Production and Circular-Oriented Valorization of Glucose-Enriched Olive Mill Wastewaters Using Novel Yarrowia lipolytica Strains
by Dimitris Sarris, Erminta Tsouko, Angelos Photiades, Sidoine Sadjeu Tchakouteu, Panagiota Diamantopoulou and Seraphim Papanikolaou
Microorganisms 2023, 11(9), 2243; https://doi.org/10.3390/microorganisms11092243 - 6 Sep 2023
Cited by 8 | Viewed by 1943
Abstract
The global market for citric acid (CA) is one of the biggest and fastest expanding markets in the food industry. The CA production employing microbial bioprocessing with efficient GRAS strains and renewable waste streams is in line with the European Union binding targets [...] Read more.
The global market for citric acid (CA) is one of the biggest and fastest expanding markets in the food industry. The CA production employing microbial bioprocessing with efficient GRAS strains and renewable waste streams is in line with the European Union binding targets for resource efficiency, sustainable consumption-production, and low-carbon technologies. In this work, the potential of three novel wild-type Yarrowia lipolytica strains (namely LMBF Y-46, LMBF Y-47 and ACA-YC 5033) regarding the production of CA and other valuable metabolites was tested on glucose-based media, and the most promising amongst the screened strains (viz. the strain ACA-YC 5033) was cultured on glucose-based media, in which part of the fermentation water had been replaced by olive-mill wastewaters (OMWs) in a novel approach of simultaneous OMW valorization and bioremediation. In the first part of this study, the mentioned strains were cultured under nitrogen-limited conditions with commercial (low-cost) glucose employed as a sole carbon source in shake-flask cultures at an initial concentration (S0) ≈ of 50 g/L. Variable quantities of secreted citric acid (CA) and intra-cellular compounds (viz. polysaccharides and lipids) were produced. All strains did not accumulate significantly high lipid quantities (i.e., maximum lipid in dry cell weight [DCW] values ≈30% w/w were noted) but produced variable CA quantities. The most promising strain, namely ACA-YC 5033, produced CA up to c. 24 g/L, with a yield of CA produced on glucose consumed (YCA/S) ≈ 0.45 g/g. This strain in stirred tank bioreactor experiments, at remarkably higher S0 concentrations (≈110 g/L) and the same initial nitrogen quantity added into the medium, produced notably higher CA quantities, up to 57 g/L (YCA/S ≈ 0.52 g/g). The potential of the same strain (ACA-YC 5033) to bioremediate OMWs and to produce value-added compounds, i.e., yeast cells, CA, and intra-cellular metabolites, was also assessed; under nitrogen-limited conditions in which OMWs had partially replaced tap water and significant glucose concentrations had been added (S0 ≈ 100 g/L, simultaneous molar ratio C/N ≈ 285 g/g, initial phenolic compounds [Phen0] adjusted to ≈1.0 g/L; these media were similar to the OMWs generated from the traditional press extraction systems) the notable CA quantity of 60.2 g/L with simultaneous YCA/S = 0.66 g/g, was obtained in shake flasks, together with satisfactory phenolic compounds removal (up to 19.5% w/w) and waste decolorization (up to 47.0%). Carbon-limited conditions with Phen0 ≈ 1.0 g/L favored the production of yeast DCW (up to 25.3 g/L), with equally simultaneous interesting phenolic compounds and color removal. The fatty acid profile showed that cellular lipids were highly unsaturated with oleic, linoleic and palmitoleic acids, accounting for more than 80% w/w. This study proposed an interesting approach that could efficiently address the biotreatment of toxic effluents and further convert them into circular-oriented bioproducts. Full article
(This article belongs to the Special Issue Advances in Microbial Metabolites)
Show Figures

Figure 1

10 pages, 2856 KiB  
Article
Excessive Consumption Hibiscus sabdariffa L. Increases Inflammation and Blood Pressure in Male Wistar Rats via High Antioxidant Capacity: The Preliminary Findings
by Linaloe Manzano-Pech, Verónica Guarner-Lans, María Elena Soto, Eulises Díaz-Díaz, Sara Caballero-Chacón, Roberto Díaz-Torres, Félix Leao Rodríguez-Fierros and Israel Pérez-Torres
Cells 2022, 11(18), 2774; https://doi.org/10.3390/cells11182774 - 6 Sep 2022
Cited by 6 | Viewed by 2526
Abstract
Hibiscus sabdariffa L. (HSL) has high amounts of antioxidants and many beneficial effects in several pathologies. However, few studies describe the possible harmful effects of high concentrations of HSL. Here we evaluate the effect of excessive and chronic consumption of infusions with different [...] Read more.
Hibiscus sabdariffa L. (HSL) has high amounts of antioxidants and many beneficial effects in several pathologies. However, few studies describe the possible harmful effects of high concentrations of HSL. Here we evaluate the effect of excessive and chronic consumption of infusions with different percentages of HSL on some oxidative stress markers in serum, and the possible association with inflammation and increased systolic blood pressure (SBP), in healthy rats. A total of 32 male Wistar rats were used to form 4 groups with 8 animals each. Group 1 control (drinking tap water), group 2, 3 and 4, drinking water supplemented with 15, 30 and 60 g/L of HSL calyxes respectively. SBP was evaluated and determinations in serum of the NO3/NO2 ratio, glutathione (GSH), total antioxidant capacity (TAC), selenium (Se), TNF-α, IL-1α/IL-1F1, IL-1β, IL-10, extracellular superoxide dismutase (EcSOD), thioredoxin reductase (TrxR) and glutathione peroxidase (GPx) activities, were evaluated. The SBP (p = 0.01), GPx activity, GSH, TAC, Se, TNF-α and EcSOD activities (p ≤ 0.001) and IL-1α/IL-1F1, IL-1β, TrxR and NO3/NO2 (p ≤ 0.05), were increased but IL-10 (p < 0.001) was decreased in rats that consumed the 3 and 6% HSL infusions. The excessive and chronic consumption of HSL may increase the TAC that could lead to a proinflammatory state which is associated with hypertension. Full article
Show Figures

Figure 1

17 pages, 3687 KiB  
Article
Portable FRET-Based Biosensor Device for On-Site Lead Detection
by Wei-Qun Lai, Yu-Fen Chang, Fang-Ning Chou and De-Ming Yang
Biosensors 2022, 12(3), 157; https://doi.org/10.3390/bios12030157 - 2 Mar 2022
Cited by 19 | Viewed by 5887
Abstract
Most methods for measuring environmental lead (Pb) content are time consuming, expensive, hazardous, and restricted to specific analytical systems. To provide a facile, safe tool to detect Pb, we created pMet-lead, a portable fluorescence resonance energy transfer (FRET)-based Pb-biosensor. The pMet-lead device comprises [...] Read more.
Most methods for measuring environmental lead (Pb) content are time consuming, expensive, hazardous, and restricted to specific analytical systems. To provide a facile, safe tool to detect Pb, we created pMet-lead, a portable fluorescence resonance energy transfer (FRET)-based Pb-biosensor. The pMet-lead device comprises a 3D-printed frame housing a 405-nm laser diode—an excitation source for fluorescence emission images (YFP and CFP)—accompanied by optical filters, a customized sample holder with a Met-lead 1.44 M1 (the most recent version)-embedded biochip, and an optical lens aligned for smartphone compatibility. Measuring the emission ratios (Y/C) of the FRET components enabled Pb detection with a dynamic range of nearly 2 (1.96), a pMet-lead/Pb dissociation constant (Kd) 45.62 nM, and a limit of detection 24 nM (0.474 μg/dL, 4.74 ppb). To mitigate earlier problems with a lack of selectivity for Pb vs. zinc, we preincubated samples with tricine, a low-affinity zinc chelator. We validated the pMet-lead measurements of the characterized laboratory samples and unknown samples from six regions in Taiwan by inductively coupled plasma mass spectrometry (ICP-MS). Notably, two unknown samples had Y/C ratios significantly higher than that of the control (3.48 ± 0.08 and 3.74 ± 0.12 vs. 2.79 ± 0.02), along with Pb concentrations (10.6 ppb and 15.24 ppb) above the WHO-permitted level of 10 ppb in tap water, while the remaining four unknowns showed no detectable Pb upon ICP-MS. These results demonstrate that pMet-lead provides a rapid, sensitive means for on-site Pb detection in water from the environment and in living/drinking supply systems to prevent potential Pb poisoning. Full article
(This article belongs to the Special Issue Sensors for Environmental Monitoring and Food Safety)
Show Figures

Graphical abstract

18 pages, 1228 KiB  
Article
Unbalanced Voltage Compensation with Optimal Voltage Controlled Regulators and Load Ratio Control Transformer
by Akito Nakadomari, Ryuto Shigenobu, Takeyoshi Kato, Narayanan Krishnan, Ashraf Mohamed Hemeida, Hiroshi Takahashi and Tomonobu Senjyu
Energies 2021, 14(11), 2997; https://doi.org/10.3390/en14112997 - 21 May 2021
Cited by 17 | Viewed by 3023
Abstract
Penetration of equipment such as photovoltaic power generations (PV), heat pump water heaters (HP), and electric vehicles (EV) introduces voltage unbalance issues in distribution systems. Controlling PV and energy storage system (ESS) outputs or coordinated EV charging are investigated for voltage unbalance compensation. [...] Read more.
Penetration of equipment such as photovoltaic power generations (PV), heat pump water heaters (HP), and electric vehicles (EV) introduces voltage unbalance issues in distribution systems. Controlling PV and energy storage system (ESS) outputs or coordinated EV charging are investigated for voltage unbalance compensation. However, some issues exist, such as dependency on installed capacity and fairness among consumers. Therefore, the ideal way to mitigate unbalanced voltages is to use grid-side equipment mainly. This paper proposes a voltage unbalance compensation based on optimal tap operation scheduling of three-phase individual controlled step voltage regulators (3ϕSVR) and load ratio control transformer (LRT). In the formulation of the optimization problem, multiple voltage unbalance metrics are comprehensively included. In addition, voltage deviations, network losses, and coordinated tap operations, which are typical issues in distribution systems, are considered. In order to investigate the mutual influence among voltage unbalance and other typical issues, various optimization problems are formulated, and then they are compared by numerical simulations. The results show that the proper operation of 3ϕSVRs and LRT effectively mitigates voltage unbalance. Furthermore, the results also show that voltage unbalances and other typical issues can be improved simultaneously with appropriate formulations. Full article
(This article belongs to the Special Issue Power System Planning and Quality Control)
Show Figures

Figure 1

12 pages, 1722 KiB  
Article
Theoretical Analysis of Constant Voltage Mode Membrane Capacitive Deionization for Water Softening
by Xin Zhang and Danny Reible
Membranes 2021, 11(4), 231; https://doi.org/10.3390/membranes11040231 - 24 Mar 2021
Cited by 12 | Viewed by 2864
Abstract
Water softening is desirable to reduce scaling in water infrastructure and to meet industrial water quality needs and consumer preferences. Membrane capacitive deionization (MCDI) can preferentially adsorb divalent ions including calcium and magnesium and thus may be an attractive water softening technology. In [...] Read more.
Water softening is desirable to reduce scaling in water infrastructure and to meet industrial water quality needs and consumer preferences. Membrane capacitive deionization (MCDI) can preferentially adsorb divalent ions including calcium and magnesium and thus may be an attractive water softening technology. In this work, a process model incorporating ion exclusion effects was applied to investigate water softening performance including ion selectivity, ion removal efficiency and energy consumption in a constant voltage (CV) mode MCDI. Trade-offs between the simulated Ca2+ selectivity and Ca2+ removal efficiency under varying applied voltage and varying initial concentration ratio of Na+ to Ca2+ were observed. A cut-off CV mode, which was operated to maximize Ca2+ removal efficiency per cycle, was found to lead to a specific energy consumption (SEC) of 0.061 kWh/mole removed Ca2+ for partially softening industrial water and 0.077 kWh/m3 removed Ca2+ for slightly softening tap water at a water recovery of 0.5. This is an order of magnitude less than reported values for other softening techniques. MCDI should be explored more fully as an energy efficient means of water softening. Full article
(This article belongs to the Special Issue Membrane-based Technologies for Water and Energy Sustainability)
Show Figures

Graphical abstract

17 pages, 4107 KiB  
Article
Fabrication of Spray-Dried Microcapsules Containing Noni Juice Using Blends of Maltodextrin and Gum Acacia: Physicochemical Properties of Powders and Bioaccessibility of Bioactives during In Vitro Digestion
by Chuang Zhang, Siew Lin Ada Khoo, Peter Swedlund, Yukiharu Ogawa, Yang Shan and Siew Young Quek
Foods 2020, 9(9), 1316; https://doi.org/10.3390/foods9091316 - 18 Sep 2020
Cited by 34 | Viewed by 5951
Abstract
Microencapsulation of fermented noni juice (FNJ) into powder format could protect bioactive compounds, reduce the unpleasant odour and improve the acceptability for consumers. Blends of maltodextrin (MD) and gum acacia (GA) were used to achieve spray-drying microencapsulation of noni juice at different blending [...] Read more.
Microencapsulation of fermented noni juice (FNJ) into powder format could protect bioactive compounds, reduce the unpleasant odour and improve the acceptability for consumers. Blends of maltodextrin (MD) and gum acacia (GA) were used to achieve spray-drying microencapsulation of noni juice at different blending ratios. The physicochemical properties including microstructure, moisture content, water activity, particle size, bulk/tapped density, dissolution rate, ATR-FTIR and the bioaccessibility of bioactive compounds in powders during in vitro digestion were examined. Results showed that blends produced with more GA produced microcapsules with lower moisture content, water activity and bulk/tapped density, but slower powder dissolution. The ATR-FTIR results suggested that there were no significant chemical interactions between the core material and carrier or between the MD and GA in the blend powders. The spray-dried noni juice powder produced using the blends with higher ratio of GA to MD showed a better protection on the bioactive compounds, resulting in a higher bioaccessibility of powders during in vitro digestion. This study provides insights into microencapsulation of noni juice using blends of MD and GA and examines the physicochemical properties and bioaccessibilities of spray-dried powders as affected by the selected carriers. Full article
Show Figures

Graphical abstract

8 pages, 517 KiB  
Article
Modelling Tap Water Consumer Ratio
by Meltem Ekiz and Osman Ufuk Ekiz
Mathematics 2020, 8(9), 1557; https://doi.org/10.3390/math8091557 - 10 Sep 2020
Cited by 1 | Viewed by 2032
Abstract
Increasing population and the rising air temperatures are known as factors that cause water depletion in the watersheds. Therefore, it is important to accurately predict the future ratios of tap water consumers using the same watershed to the population living in the specified [...] Read more.
Increasing population and the rising air temperatures are known as factors that cause water depletion in the watersheds. Therefore, it is important to accurately predict the future ratios of tap water consumers using the same watershed to the population living in the specified area, to produce better water policies and to take the necessary measures. Predictions can be made by a growth curve model (GCM). Parameter estimations of the GCM are usually based on the ordinary least square (OLS) estimator. However, the outlier presence affects the estimations and the predictions, which are obtained by using the estimated model. The present article attempts to construct first- and third-order GCMs with robust least median square (LMS) and M estimators to make short-term predictions of ratios of tap water consumers. According to the findings, parameter estimations of the models, the outliers, and the predictions vary with respect to the estimators. The M estimator for short-term predictions is suggested for use, due to its robustness against outlier points. Full article
Show Figures

Figure 1

13 pages, 1536 KiB  
Article
The Influence of Water Composition on Flavor and Nutrient Extraction in Green and Black Tea
by Melanie Franks, Peter Lawrence, Alireza Abbaspourrad and Robin Dando
Nutrients 2019, 11(1), 80; https://doi.org/10.3390/nu11010080 - 3 Jan 2019
Cited by 38 | Viewed by 20767
Abstract
Tea is made from the processed leaves of the Camellia sinensis plant, which is a tropical and subtropical evergreen plant native to Asia. Behind water, tea is the most consumed beverage in the world. Factors that affect tea brewing include brewing temperature, vessel, [...] Read more.
Tea is made from the processed leaves of the Camellia sinensis plant, which is a tropical and subtropical evergreen plant native to Asia. Behind water, tea is the most consumed beverage in the world. Factors that affect tea brewing include brewing temperature, vessel, and time, water-to-leaf ratio, and, in some reports, the composition of the water used. In this project, we tested if the water used to brew tea was sufficient to influence perceived flavor to the everyday tea drinker. Black and green tea were brewed with bottled, tap, and deionized water, with brewing temperature, vessel, time, and the water-to-leaf ratio matched. The samples were analyzed with a human consumer sensory panel, as well as instrumentally for color, turbidity, and Epigallocatechin Gallate (EGCG) content. Results showed that the type of water used to brew tea drastically affected sensory properties of green tea (and mildly also for black tea), which was likely driven by a much greater degree of extraction of bitter catechins in teas brewed with more purified bottled or deionized water. For the everyday tea drinker who drinks green tea for health, the capability to double the EGCG content in tea by simply brewing with bottled or deionized water represents a clear advantage. Conversely, those drinking tea for flavor may benefit from instead brewing tea with tap water. Full article
(This article belongs to the Special Issue Taste, Nutrition and Health)
Show Figures

Figure 1

12 pages, 4126 KiB  
Article
Anti-Agglomeration Behavior and Sensing Assay of Chlorsulfuron Based on Acetamiprid-Gold Nanoparticles
by Guangyang Liu, Ruonan Zhang, Lingyun Li, Xiaodong Huang, Tengfei Li, Meng Lu, Donghui Xu and Jing Wang
Nanomaterials 2018, 8(7), 499; https://doi.org/10.3390/nano8070499 - 6 Jul 2018
Cited by 17 | Viewed by 3361
Abstract
Monitoring of low levels of chlorsulfuron in environmental water samples is important. Although several detection methods have been developed, they all have some drawbacks, such as being time-consuming, requiring expensive instruments and experienced operators, and consuming large volumes of organic solvents. There is [...] Read more.
Monitoring of low levels of chlorsulfuron in environmental water samples is important. Although several detection methods have been developed, they all have some drawbacks, such as being time-consuming, requiring expensive instruments and experienced operators, and consuming large volumes of organic solvents. There is an urgent need for a simple, rapid, and inexpensive detection method for chlorsulfuron. Herein, such a method was developed using anti-aggregation of gold nanoparticles (AuNPs) in the presence of acetamiprid in agricultural irrigation water samples. Aggregation of the AuNPs was induced by acetamiprid, and this produced a distinct color change from Bordeaux red to blue. However, the strong hydrogen bonding interaction between chlorsulfuron and acetamiprid could inhibit AuNP aggregation. The effect of chlorsulfuron on the anti-agglomeration behavior of AuNPs was monitored by ultraviolet–visiblespectroscopy (UV-Vis) and the naked eye over a concentration range 0.1–100 mg/L. The detection limit for chlorsulfuron was 0.025 mg/L (signal-to-noise ratio of three). This colorimetric method was successfully applied to the determination of chlorsulfuron in spiked tap water and agricultural irrigation water with satisfactory recoveries (76.3%–94.2%). Full article
Show Figures

Figure 1

Back to TopTop