Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = sympathetic cholinergic nervous system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 488 KiB  
Systematic Review
Dysautonomia in Alzheimer’s Disease: A Systematic Review
by Marianna Papadopoulou, Maria-Ioanna Stefanou, Eleni Bakola, Christos Moschovos, Athanasia Athanasaki, Evdoxia Tsigkaropoulou, Ioannis Michopoulos, George P. Paraskevas, Rossetos Gournellis and Georgios Tsivgoulis
Brain Sci. 2025, 15(5), 502; https://doi.org/10.3390/brainsci15050502 - 14 May 2025
Viewed by 788
Abstract
Background: Alzheimer’s disease (AD) is the most common cause of dementia. In addition to cognitive decline, non-cognitive symptoms, including dysautonomia, have been reported, although these symptoms are rarely acknowledged by patients. Dysautonomia in AD is thought to arise from either cholinergic deficits [...] Read more.
Background: Alzheimer’s disease (AD) is the most common cause of dementia. In addition to cognitive decline, non-cognitive symptoms, including dysautonomia, have been reported, although these symptoms are rarely acknowledged by patients. Dysautonomia in AD is thought to arise from either cholinergic deficits or hypothalamic involvement. A wide range of tests has been used to investigate the role of the autonomic nervous system; however, the results have been inconsistent. Aim: To systematically review all published research investigating autonomic nervous system (ANS) involvement in patients with AD. A comprehensive literature search was conducted in December 2024 across the following databases: PubMed, Cochrane Library, ScienceDirect, and Scopus. Results: A total of 1422 records were identified, of which 30 studies fulfilled the inclusion criteria and were included in the review. Several autonomic tests were employed, with Heart Rate Variability (HRV) being the most frequently used. Other tests included assessments of orthostatic hypotension (OH), postprandial hypotension (PPH), sympathetic skin response (SSR), the tilt test, 123I-MIBG cardiac scintigraphy, norepinephrine (NE) measurements in serum and cerebrospinal fluid, and baroreflex sensitivity. In most studies, AD patients were compared to either healthy controls or patients with other types of dementia. Discussion: The primary finding of this review is that, although patients with AD rarely report dysautonomic symptoms, they frequently exhibit abnormal results on various autonomic tests. In some cases, these findings were sufficient to differentiate AD patients from healthy controls as well as from patients with Diffuse Lewy Body disease (DLB). The inconsistency in reporting symptoms, along with the variability in test results, suggests that autonomic dysfunction in AD may be under-recognized and warrants further investigation. Conclusions: The heterogeneity of the included studies limits the generalizability of the results. However, given the potential impact of dysautonomia on both quality of life and mortality, it is recommended that AD patients be systematically assessed for autonomic dysfunction. Even in the absence of overt symptoms, appropriate treatment should be considered where indicated to mitigate potential risks. Full article
(This article belongs to the Special Issue Aging-Related Changes in Memory and Cognition)
Show Figures

Figure 1

13 pages, 866 KiB  
Review
The Crosstalk between Nerves and Cancer—A Poorly Understood Phenomenon and New Possibilities
by David Benzaquen, Yaacov R. Lawrence, Daniel Taussky, Daniel Zwahlen, Christoph Oehler and Ambroise Champion
Cancers 2024, 16(10), 1875; https://doi.org/10.3390/cancers16101875 - 15 May 2024
Cited by 3 | Viewed by 3090
Abstract
Introduction: Crosstalk occurs between nerve and cancer cells. These interactions are important for cancer homeostasis and metabolism. Nerve cells influence the tumor microenvironment (TME) and participate in metastasis through neurogenesis, neural extension, and axonogenesis. We summarized the past and current literature on the [...] Read more.
Introduction: Crosstalk occurs between nerve and cancer cells. These interactions are important for cancer homeostasis and metabolism. Nerve cells influence the tumor microenvironment (TME) and participate in metastasis through neurogenesis, neural extension, and axonogenesis. We summarized the past and current literature on the interaction between nerves and cancer, with a special focus on pancreatic ductal adenocarcinoma (PDAC), prostate cancer (PCa), and the role of the nerve growth factor (NGF) in cancer. Materials/Methods: We reviewed PubMed and Google Scholar for the relevant literature on the relationship between nerves, neurotrophins, and cancer in general and specifically for both PCa and PDAC. Results: The NGF helped sustain cancer cell proliferation and evade immune defense. It is a neuropeptide involved in neurogenic inflammation through the activation of several cells of the immune system by several proinflammatory cytokines. Both PCa and PDAC employ different strategies to evade immune defense. The prostate is richly innervated by both the sympathetic and parasympathetic nerves, which helps in both growth control and homeostasis. Newly formed autonomic nerve fibers grow into cancer cells and contribute to cancer initiation and progression through the activation of β-adrenergic and muscarinic cholinergic signaling. Surgical or chemical sympathectomy prevents the development of prostate cancer. Beta-blockers have a high therapeutic potential for cancer, although current clinical data have been contradictory. With a better understanding of the beta-receptors, one could identify specific receptors that could have an effect on prostate cancer development or act as therapeutic agents. Conclusion: The bidirectional crosstalk between the nervous system and cancer cells has emerged as a crucial regulator of cancer and its microenvironment. Denervation has been shown to be promising in vitro and in animal models. Additionally, there is a potential relationship between cancer and psychosocial biology through neurotransmitters and neurotrophins. Full article
(This article belongs to the Special Issue Targeting the Tumor Microenvironment (Volume II))
Show Figures

Figure 1

18 pages, 3158 KiB  
Article
Disruption of Atrial Rhythmicity by the Air Pollutant 1,2-Naphthoquinone: Role of Beta-Adrenergic and Sensory Receptors
by Antonio G. Soares, Simone A. Teixeira, Pratish Thakore, Larissa G. Santos, Walter dos R. P. Filho, Vagner R. Antunes, Marcelo N. Muscará, Susan D. Brain and Soraia K. P. Costa
Biomolecules 2024, 14(1), 57; https://doi.org/10.3390/biom14010057 - 31 Dec 2023
Viewed by 2474
Abstract
The combustion of fossil fuels contributes to air pollution (AP), which was linked to about 8.79 million global deaths in 2018, mainly due to respiratory and cardiovascular-related effects. Among these, particulate air pollution (PM2.5) stands out as a major risk factor for heart [...] Read more.
The combustion of fossil fuels contributes to air pollution (AP), which was linked to about 8.79 million global deaths in 2018, mainly due to respiratory and cardiovascular-related effects. Among these, particulate air pollution (PM2.5) stands out as a major risk factor for heart health, especially during vulnerable phases. Our prior study showed that premature exposure to 1,2-naphthoquinone (1,2-NQ), a chemical found in diesel exhaust particles (DEP), exacerbated asthma in adulthood. Moreover, increased concentration of 1,2-NQ contributed to airway inflammation triggered by PM2.5, employing neurogenic pathways related to the up-regulation of transient receptor potential vanilloid 1 (TRPV1). However, the potential impact of early-life exposure to 1,2-naphthoquinone (1,2-NQ) on atrial fibrillation (AF) has not yet been investigated. This study aims to investigate how inhaling 1,2-NQ in early life affects the autonomic adrenergic system and the role played by TRPV1 in these heart disturbances. C57Bl/6 neonate male mice were exposed to 1,2-NQ (100 nM) or its vehicle at 6, 8, and 10 days of life. Early exposure to 1,2-NQ impairs adrenergic responses in the right atria without markedly affecting cholinergic responses. ECG analysis revealed altered rhythmicity in young mice, suggesting increased sympathetic nervous system activity. Furthermore, 1,2-NQ affected β1-adrenergic receptor agonist-mediated positive chronotropism, which was prevented by metoprolol, a β1 receptor blocker. Capsazepine, a TRPV1 blocker but not a TRPC5 blocker, reversed 1,2-NQ-induced cardiac changes. In conclusion, neonate mice exposure to AP 1,2-NQ results in an elevated risk of developing cardiac adrenergic dysfunction, potentially leading to atrial arrhythmia at a young age. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

14 pages, 2224 KiB  
Article
Investigation of Autonomic Dysfunction in Alzheimer’s Disease—A Computational Model-Based Approach
by Sajitha Somasundaran Nair, Mini Maniyelil Govindankutty, Minimol Balakrishnan, Krishna Prasad, Talakad N. Sathyaprabha and Kaviraja Udupa
Brain Sci. 2023, 13(9), 1322; https://doi.org/10.3390/brainsci13091322 - 14 Sep 2023
Cited by 8 | Viewed by 2701
Abstract
(1) Background and Objective: Alzheimer’s disease (AD) is commonly accompanied by autonomic dysfunction. Investigating autonomic dysfunction’s occurrence patterns and severity may aid in making a distinction between different dementia subtypes, as cardiac autonomic dysfunction and AD severity are correlated. Heart rate variability (HRV) [...] Read more.
(1) Background and Objective: Alzheimer’s disease (AD) is commonly accompanied by autonomic dysfunction. Investigating autonomic dysfunction’s occurrence patterns and severity may aid in making a distinction between different dementia subtypes, as cardiac autonomic dysfunction and AD severity are correlated. Heart rate variability (HRV) allows for a non-invasive assessment of the autonomic nervous system (ANS). AD is characterized by cholinergic depletion. A computational model of ANS based on the kinetics of acetylcholine and norepinephrine is used to simulate HRV for various autonomic states. The model has the flexibility to suitably modulate the concentration of acetylcholine corresponding to different autonomic states. (2) Methods: Twenty clinically plausible AD patients are compared to 20 age- and gender-matched healthy controls using HRV measures. Statistical analysis is performed to identify the HRV parameters that vary significantly in AD. By modulating the acetylcholine concentration in a controlled manner, different autonomic states of Alzheimer’s disease are simulated using the ANS model. (3) Results: In patients with AD, there is a significant decrease in vagal activity, sympathovagal imbalance with a dominant sympathetic activity, and change in the time domain, frequency domain, and nonlinear HRV characteristics. Simulated HRV features corresponding to 10 progressive states of AD are presented. (4) Conclusions: There is a significant difference in the HRV features during AD. As cholinergic depletion and autonomic dysfunction have a common neurological basis, autonomic function assessment can help in diagnosis and assessment of AD. Quantitative models may help in better comprehending the pathophysiology of the disease and assessment of its progress. Full article
Show Figures

Figure 1

11 pages, 637 KiB  
Review
Autonomic Nervous System Regulation of Epicardial Adipose Tissue: Potential Roles for Regulator of G Protein Signaling-4
by Alexandra M. Carbone, Giselle Del Calvo, Deepika Nagliya, Karina Sharma and Anastasios Lymperopoulos
Curr. Issues Mol. Biol. 2022, 44(12), 6093-6103; https://doi.org/10.3390/cimb44120415 - 5 Dec 2022
Cited by 9 | Viewed by 4581
Abstract
The epicardial adipose tissue (EAT) or epicardial fat is a visceral fat depot in the heart that contains intrinsic adrenergic and cholinergic nerves, through which it interacts with the cardiac sympathetic (adrenergic) and parasympathetic (cholinergic) nervous systems. These EAT nerves represent a significant [...] Read more.
The epicardial adipose tissue (EAT) or epicardial fat is a visceral fat depot in the heart that contains intrinsic adrenergic and cholinergic nerves, through which it interacts with the cardiac sympathetic (adrenergic) and parasympathetic (cholinergic) nervous systems. These EAT nerves represent a significant source of several adipokines and other bioactive molecules, including norepinephrine, epinephrine, and free fatty acids. The production of these molecules is biologically relevant for the heart, since abnormalities in EAT secretion are implicated in the development of pathological conditions, including coronary atherosclerosis, atrial fibrillation, and heart failure. Sympathetic hyperactivity and parasympathetic (cholinergic) derangement are associated with EAT dysfunction, leading to a variety of adverse cardiac conditions, such as heart failure, diastolic dysfunction, atrial fibrillation, etc.; therefore, several studies have focused on exploring the autonomic regulation of EAT as it pertains to heart disease pathogenesis and progression. In addition, Regulator of G protein Signaling (RGS)-4 is a protein with significant regulatory roles in both adrenergic and muscarinic receptor signaling in the heart. In this review, we provide an overview of the autonomic regulation of EAT, with a specific focus on cardiac RGS4 and the potential roles this protein plays in this regulation. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

15 pages, 901 KiB  
Review
A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable
by Alexia Tiberi, Simona Capsoni and Antonino Cattaneo
Cells 2022, 11(11), 1835; https://doi.org/10.3390/cells11111835 - 3 Jun 2022
Cited by 7 | Viewed by 3610
Abstract
Microglia are the only immune cell population present in the brain parenchyma. Their vantage position in the central nervous system (CNS) enables these myeloid cells to perform the most disparate of tasks: from the classical immune functions of fighting infections and surveilling the [...] Read more.
Microglia are the only immune cell population present in the brain parenchyma. Their vantage position in the central nervous system (CNS) enables these myeloid cells to perform the most disparate of tasks: from the classical immune functions of fighting infections and surveilling the extracellular space for pathogens and damage, to sculpting the neuronal circuitry by pruning unnecessary synapses and assisting neurons in spine formation, aiding in the maintenance of brain homeostasis. The neurotrophin field has always been dominated by the neurocentric view that the primary target of these molecules must be neurons: this holds true even for the Nerve Growth Factor (NGF), which owes its popularity in the neuroscience community to its trophic and tropic activity towards sensory and sympathetic neurons in the peripheral nervous system, and cholinergic neurons in the CNS. The increasing evidence that microglia are an integral part of neuronal computation calls for a closer look as to whether these glial cells are capable of responding directly to NGF. In this review, we will first outline evidence in support of a role for NGF as a molecule mediating neuroimmune communication. Then, we will illustrate some of those non-immune features that have made microglial cells one of the hottest topics of this last decade. In conclusion, we will discuss evidence in support of a microglial function for NGF. Full article
Show Figures

Figure 1

13 pages, 9148 KiB  
Article
Entropy Analysis of Neonatal Electrodermal Activity during the First Three Days after Birth
by Zuzana Visnovcova, Marek Kozar, Zuzana Kuderava, Mirko Zibolen, Nikola Ferencova and Ingrid Tonhajzerova
Entropy 2022, 24(3), 422; https://doi.org/10.3390/e24030422 - 17 Mar 2022
Cited by 1 | Viewed by 2779
Abstract
The entropy-based parameters determined from the electrodermal activity (EDA) biosignal evaluate the complexity within the activity of the sympathetic cholinergic system. We focused on the evaluation of the complex sympathetic cholinergic regulation by assessing EDA using conventional indices (skin conductance level (SCL), non-specific [...] Read more.
The entropy-based parameters determined from the electrodermal activity (EDA) biosignal evaluate the complexity within the activity of the sympathetic cholinergic system. We focused on the evaluation of the complex sympathetic cholinergic regulation by assessing EDA using conventional indices (skin conductance level (SCL), non-specific skin conductance responses, spectral EDA indices), and entropy-based parameters (approximate, sample, fuzzy, permutation, Shannon, and symbolic information entropies) in newborns during the first three days of postnatal life. The studied group consisted of 50 healthy newborns (21 boys, average gestational age: 39.0 ± 0.2 weeks). EDA was recorded continuously from the feet at rest for three periods (the first day—2 h after birth, the second day—24 h after birth, and the third day—72 h after birth). Our results revealed higher SCL, spectral EDA index in a very-low frequency band, approximate, sample, fuzzy, and permutation entropy during the first compared to second and third days, while Shannon and symbolic information entropies were lower during the first day compared to other periods. In conclusion, EDA parameters seem to be sensitive in the detection of the sympathetic regulation changes in early postnatal life and which can represent an important step towards a non-invasive early diagnosis of the pathological states linked to autonomic dysmaturation in newborns. Full article
(This article belongs to the Special Issue Entropy in the Application of Biomedical Signals)
Show Figures

Figure 1

24 pages, 3404 KiB  
Review
Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity
by David J. Brinkman, Anne S. ten Hove, Margriet J. Vervoordeldonk, Misha D. Luyer and Wouter J. de Jonge
Cells 2019, 8(7), 670; https://doi.org/10.3390/cells8070670 - 2 Jul 2019
Cited by 69 | Viewed by 12298
Abstract
Inflammatory bowel diseases (IBD) have a complex, multifactorial pathophysiology with an unmet need for effective treatment. This calls for novel strategies to improve disease outcome and quality of life for patients. Increasing evidence suggests that autonomic nerves and neurotransmitters, as well as neuropeptides, [...] Read more.
Inflammatory bowel diseases (IBD) have a complex, multifactorial pathophysiology with an unmet need for effective treatment. This calls for novel strategies to improve disease outcome and quality of life for patients. Increasing evidence suggests that autonomic nerves and neurotransmitters, as well as neuropeptides, modulate the intestinal immune system, and thereby regulate the intestinal inflammatory processes. Although the autonomic nervous system is classically divided in a sympathetic and parasympathetic branch, both play a pivotal role in the crosstalk with the immune system, with the enteric nervous system acting as a potential interface. Pilot clinical trials that employ vagus nerve stimulation to reduce inflammation are met with promising results. In this paper, we review current knowledge on the innervation of the gut, the potential of cholinergic and adrenergic systems to modulate intestinal immunity, and comment on ongoing developments in clinical trials. Full article
Show Figures

Figure 1

Back to TopTop