Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = swine dysentery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5586 KiB  
Article
Synergic Effect of Brachyspira hyodysenteriae and Lawsonia intracellularis Coinfection: Anatomopathological and Microbiome Evaluation
by Amanda G. S. Daniel, Carlos E. R. Pereira, Fernanda Dorella, Felipe L. Pereira, Ricardo P. Laub, Mariana R. Andrade, Javier A. Barrera-Zarate, Michelle P. Gabardo, Luísa V. A. Otoni, Nubia R. Macedo, Paula A. Correia, Camila M. Costa, Amanda O. Vasconcellos, Mariane M. Wagatsuma, Thaire P. Marostica, Henrique C. P. Figueiredo and Roberto M. C. Guedes
Animals 2023, 13(16), 2611; https://doi.org/10.3390/ani13162611 - 13 Aug 2023
Cited by 5 | Viewed by 2140
Abstract
Brachyspira hyodysenteriae and Lawsonia intracellularis coinfection has been observed in the diagnostic routine; however, no studies have evaluated their interaction. This study aimed to characterize lesions and possible synergisms in experimentally infected pigs. Four groups of piglets, coinfection (CO), B. hyodysenteriae (BRA), L. [...] Read more.
Brachyspira hyodysenteriae and Lawsonia intracellularis coinfection has been observed in the diagnostic routine; however, no studies have evaluated their interaction. This study aimed to characterize lesions and possible synergisms in experimentally infected pigs. Four groups of piglets, coinfection (CO), B. hyodysenteriae (BRA), L. intracellularis (LAW), and negative control (NEG), were used. Clinical signals were evaluated, and fecal samples were collected for qPCR. At 21 days post infection (dpi), all animals were euthanized. Gross lesions, bacterial isolation, histopathology, immunohistochemistry, and fecal microbiome analyses were performed. Diarrhea started at 12 dpi, affecting 11/12 pigs in the CO group and 5/11 pigs in the BRA group. Histopathological lesions were significantly more severe in the CO than the other groups. B. hyodysenteriae was isolated from 11/12 pigs in CO and 5/11 BRA groups. Pigs started shedding L. intracellularis at 3 dpi, and all inoculated pigs tested positive on day 21. A total of 10/12 CO and 7/11 BRA animals tested positive for B. hyodysenteriae by qPCR. A relatively low abundance of microbiota was observed in the CO group. Clinical signs and macroscopic and microscopic lesions were significantly more severe in the CO group compared to the other groups. The presence of L. intracellularis in the CO group increased the severity of swine dysentery. Full article
(This article belongs to the Special Issue Gastrointestinal Tract Health in Pigs)
Show Figures

Figure 1

12 pages, 834 KiB  
Article
The Impact of PRRS Eradication Program on the Production Parameters of the Hungarian Swine Sector
by István Szabó, Imre Nemes, László Búza, Ferenc Polyák, Ádám Bálint, Gábor Fitos, Derald J. Holtkamp and László Ózsvári
Animals 2023, 13(9), 1565; https://doi.org/10.3390/ani13091565 - 7 May 2023
Cited by 6 | Viewed by 2522
Abstract
Background: The Hungarian national eradication program of PRRS was successfully completed between 2014 and 2022. There were doubts about the efficiency of the eradication program in Hungary from the beginning to the tune that it might only be carried out efficiently through depopulation–repopulation [...] Read more.
Background: The Hungarian national eradication program of PRRS was successfully completed between 2014 and 2022. There were doubts about the efficiency of the eradication program in Hungary from the beginning to the tune that it might only be carried out efficiently through depopulation–repopulation of the infected herds, which is a very costly procedure. In our study, we investigated the impact of the depopulation–repopulation procedure, which played a prominent role in the PRRS eradication program on the productivity of the Hungarian swine sector–namely, on the number of slaughter pigs per sow per year and the total live slaughter weight per sow per year. Material and Methods: Since 2014, we monitored the evolution of the PRRS eradication through the depopulation–repopulation approach on the large-scale breeding herds in Hungary. Most producers replaced their herds with animals that were free of PRRS and other infectious diseases (mycoplasmosis, actinobacillosis, swine dysentery, atrophic rhinitis, etc.). On this basis, we evaluated the change in the number of slaughter pigs per sow per year as a consequence of depopulation–repopulation of the herds being carried out. In the statistical analysis linear regression was used. Conclusions: The results of our study demonstrate that the PRRS eradication program with the herd depopulation–repopulation approach led to a considerable improvement of the productivity of Hungarian pig farming. This result also demonstrates that, independent of the PRRS eradication, it is still necessary to consider investments into the individual production units to increase efficiency, and to carry out herd depopulation–repopulation in cases where the current genetics limits improvements in productivity. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

14 pages, 2148 KiB  
Article
In Vitro Screening of Non-Antibiotic Components to Mitigate Intestinal Lesions Caused by Brachyspira hyodysenteriae, Lawsonia intracellularis and Salmonella enterica Serovar Typhimurium
by Nienke de Groot, Mariana Meneguzzi, Barbara de Souza and Matheus de O. Costa
Animals 2022, 12(18), 2356; https://doi.org/10.3390/ani12182356 - 9 Sep 2022
Cited by 2 | Viewed by 2668
Abstract
Swine dysentery, ileitis, and porcine salmonellosis are production-limiting diseases of global importance for swine production. They are caused by infection with Brachyspira hyodysenteriae, Lawsonia intracellularis, and Salmonella enterica serovar Typhimurium, respectively. Currently, the prevention, treatment, and control of these diseases still [...] Read more.
Swine dysentery, ileitis, and porcine salmonellosis are production-limiting diseases of global importance for swine production. They are caused by infection with Brachyspira hyodysenteriae, Lawsonia intracellularis, and Salmonella enterica serovar Typhimurium, respectively. Currently, the prevention, treatment, and control of these diseases still relies on antimicrobials. The goal of this study was to evaluate the effectiveness of four commercially available non-antimicrobial compounds in preventing lesions caused by the bacteria cited above using an in vitro intestinal culture model. A total of five pigs per pathogen were used and multiple compounds were evaluated. For compound F (a fungal fermented rye), S (a blend of short and medium chain fatty acids), and P (a synergistic blend of short and medium chain fatty acids, including coated butyrates), a total of four explants/pig for each treatment were used, while for compound D (an extract of carob and thyme) only 12 explants/pig for each treatment were used. Explants were exposed to a combination of pathogen only (n = 4/compound/pig), compound only (n = 4/compound/pig), or pathogen and compound (n = 4/compound/pig) and sampled at two time-points. Histopathology and gene expression levels were evaluated to investigate the treatment effect on explants. Short and medium-chain fatty acids, and an extract of carob and thyme, was found to mitigate lesions due to B. hyodysenteriae exposure. A fungal fermented prebiotic increased healthy epithelial coverage when explants were exposed to L. intracellularis or S. Typhimurium. These findings represent a step towards finding alternatives to antimicrobials usage and control of swine dysentery, ileitis, and salmonellosis in pork production. Full article
(This article belongs to the Special Issue Gastrointestinal Tract Health in Pigs)
Show Figures

Figure 1

12 pages, 1309 KiB  
Article
Experimental Infection of Pigs with a ST 245 Brachyspira hyodysenteriae Isolated from an Asymptomatic Pig in a Herd with No History of Swine Dysentery
by José Paulo H. Sato, Amanda G. S. Daniel, Carlos E. R. Pereira, Mariana R. Andrade, Ricardo P. Laub, Michelle P. Gabardo, Luisa V. A. Otoni, Nubia R. Macedo, Javier A. Barrera-Zarate and Roberto M. C. Guedes
Vet. Sci. 2022, 9(6), 286; https://doi.org/10.3390/vetsci9060286 - 10 Jun 2022
Cited by 2 | Viewed by 3931
Abstract
Swine dysentery (SD) is characterized by a severe mucohemorrhagic colitis caused by infection with Brachyspira species. In infected herds the disease causes considerable financial loss due to mortality, slow growth rates, poor feed conversion, and costs of treatment. B. hyodysenteriae is the most [...] Read more.
Swine dysentery (SD) is characterized by a severe mucohemorrhagic colitis caused by infection with Brachyspira species. In infected herds the disease causes considerable financial loss due to mortality, slow growth rates, poor feed conversion, and costs of treatment. B. hyodysenteriae is the most common etiological agent of SD and infection is usually associated with disease. However, isolated reports have described low pathogenic strains of B. hyodysenteriae. The aim of this study was to describe an experimental infection trial using a subclinical B. hyodysenteriae isolated from an animal without clinical signs and from a disease-free herd, to evaluate the pathogenicity and clinical pathological characteristics compared to a highly clinical isolate. Forty-eight 5-week-old pigs were divided into three groups: control, clinical and the subclinical isolates. The first detection/isolation of B. hyodysenteriae in samples of the animals challenged with a known clinical B. hyodysenteriae strain (clinical group) occurred 5th day post inoculation. Considering the whole period of the study, 11/16 animals from this group were qPCR positive in fecal samples, and diarrhea was observed in 10/16 pigs. In the subclinical isolate group, one animal had diarrhea. There were SD large intestine lesions in 3 animals at necropsy and positive B. hyodysenteriae isolation in 7/15 samples of the subclinical group. In the control group, no diarrhea, gross/microscopic lesions, or qPCR positivity were observed. Clinical signs, bacterial isolation, macroscopic and histologic lesions were significantly difference among groups, demonstrating low pathogenicity of the subclinical isolate in susceptible pigs. Full article
(This article belongs to the Special Issue New Findings on Long-Known Pathogens in Pigs)
Show Figures

Figure 1

11 pages, 882 KiB  
Article
Dual Antimicrobial Effect of Medium-Chain Fatty Acids against an Italian Multidrug Resistant Brachyspira hyodysenteriae Strain
by Giulia Giovagnoni, Benedetta Tugnoli, Andrea Piva and Ester Grilli
Microorganisms 2022, 10(2), 301; https://doi.org/10.3390/microorganisms10020301 - 27 Jan 2022
Cited by 11 | Viewed by 3996
Abstract
The fastidious nature of Brachyspira hyodysenteriae limits an accurate in vitro pre-screening of conventionally used antibiotics and other candidate alternative antimicrobials. This results in a non-judicious use of antibiotics, leading to an exponential increase of the antibiotic resistance issue and a slowdown in [...] Read more.
The fastidious nature of Brachyspira hyodysenteriae limits an accurate in vitro pre-screening of conventionally used antibiotics and other candidate alternative antimicrobials. This results in a non-judicious use of antibiotics, leading to an exponential increase of the antibiotic resistance issue and a slowdown in the research for new molecules that might stop this serious phenomenon. In this study we tested four antibiotics (tylosin, lincomycin, doxycycline, and tiamulin) and medium-chain fatty acids (MCFA; hexanoic, octanoic, decanoic, and dodecanoic acid) against an Italian field strain of B. hyodysenteriae and the ATCC 27164 strain as reference. We determined the minimal inhibitory concentrations of these substances, underlining the multidrug resistance pattern of the field strain and, on the contrary, a consistent and stable inhibitory effect of the tested MCFA against both strains. Then, sub-inhibitory concentrations of antibiotics and MCFA were examined in modulating a panel of B. hyodysenteriae virulence genes (tlyA, tlyB, bhlp16, bhlp29.7, and bhmp39f). Results of gene expression analysis were variable, with up- and downregulations not properly correlated with particular substances or target genes. Decanoic and dodecanoic acid with their direct and indirect antimicrobial property were the most effective among MCFA, suggesting them as good candidates for subsequent in vivo trials. Full article
Show Figures

Figure 1

19 pages, 4352 KiB  
Article
Highly Fermentable Fiber Alters Fecal Microbiota and Mitigates Swine Dysentery Induced by Brachyspira hyodysenteriae
by Emma T. Helm, Nicholas K. Gabler and Eric. R. Burrough
Animals 2021, 11(2), 396; https://doi.org/10.3390/ani11020396 - 4 Feb 2021
Cited by 15 | Viewed by 3983
Abstract
Brachyspira hyodysenteriae is an etiological agent of swine dysentery (SD). Diet fermentability plays a role in development of SD, but the mechanism(s) of action are largely unknown. Thus, this study aimed to determine whether replacing lowly fermentable fiber with highly fermentable fiber would [...] Read more.
Brachyspira hyodysenteriae is an etiological agent of swine dysentery (SD). Diet fermentability plays a role in development of SD, but the mechanism(s) of action are largely unknown. Thus, this study aimed to determine whether replacing lowly fermentable fiber with highly fermentable fiber would mitigate a 42 d B. hyodysenteriae challenge. Thirty-nine barrows were allocated to dietary treatment groups: (1) 20% corn distillers dried grain with solubles (DDGS), 0% beet pulp (BP) or resistant starch (RS; lowly fermentable fiber (LFF)); (2) 10% DDGS, 5% BP, 5% RS (medium fermentable fiber (MFF)); and (3) 0% DDGS, 10% BP, 10% RS (highly fermentable fiber (HFF)). On day post inoculation 0, pigs were inoculated with B. hyodysenteriae. Overall, 85% LFF pigs developed clinical SD, 46% of MFF pigs developed SD, and 15% of HFF pigs developed SD (p < 0.05). Overall average daily gain (ADG) differed among all treatments (p < 0.001), with LFF pigs having the lowest ADG. For HFF pigs, ADG was 37% greater than LFF pigs (p < 0.001) and 19% greater than MFF pigs (p = 0.037). The LFF diet had greater relative abundance of Shuttleworthia and Ruminococcus torques. Further, microbiota of pigs that developed SD had enriched Prevotellaceae. Collectively, replacing DDGS with highly fermentable fiber reduced clinical SD, improved performance, and modulated fecal microbiota during B. hyodysenteriae challenge. Full article
Show Figures

Figure 1

16 pages, 2327 KiB  
Review
Spirochete Flagella and Motility
by Shuichi Nakamura
Biomolecules 2020, 10(4), 550; https://doi.org/10.3390/biom10040550 - 4 Apr 2020
Cited by 37 | Viewed by 14633
Abstract
Spirochetes can be distinguished from other flagellated bacteria by their long, thin, spiral (or wavy) cell bodies and endoflagella that reside within the periplasmic space, designated as periplasmic flagella (PFs). Some members of the spirochetes are pathogenic, including the causative agents of syphilis, [...] Read more.
Spirochetes can be distinguished from other flagellated bacteria by their long, thin, spiral (or wavy) cell bodies and endoflagella that reside within the periplasmic space, designated as periplasmic flagella (PFs). Some members of the spirochetes are pathogenic, including the causative agents of syphilis, Lyme disease, swine dysentery, and leptospirosis. Furthermore, their unique morphologies have attracted attention of structural biologists; however, the underlying physics of viscoelasticity-dependent spirochetal motility is a longstanding mystery. Elucidating the molecular basis of spirochetal invasion and interaction with hosts, resulting in the appearance of symptoms or the generation of asymptomatic reservoirs, will lead to a deeper understanding of host–pathogen relationships and the development of antimicrobials. Moreover, the mechanism of propulsion in fluids or on surfaces by the rotation of PFs within the narrow periplasmic space could be a designing base for an autonomously driving micro-robot with high efficiency. This review describes diverse morphology and motility observed among the spirochetes and further summarizes the current knowledge on their mechanisms and relations to pathogenicity, mainly from the standpoint of experimental biophysics. Full article
(This article belongs to the Special Issue Perspectives on Bacterial Flagellar Motor)
Show Figures

Figure 1

21 pages, 440 KiB  
Review
Swine Dysentery: Aetiology, Pathogenicity, Determinants of Transmission and the Fight against the Disease
by Avelino Alvarez-Ordóez, Francisco Javier Martínez-Lobo, Héctor Arguello, Ana Carvajal and Pedro Rubio
Int. J. Environ. Res. Public Health 2013, 10(5), 1927-1947; https://doi.org/10.3390/ijerph10051927 - 10 May 2013
Cited by 79 | Viewed by 19343
Abstract
Swine Dysentery (SD) is a severe mucohaemorhagic enteric disease of pigs caused by Brachyspira hyodysenteriae, which has a large impact on pig production and causes important losses due to mortality and sub-optimal performance. Although B. hyodysenteriae has been traditionally considered a pathogen mainly [...] Read more.
Swine Dysentery (SD) is a severe mucohaemorhagic enteric disease of pigs caused by Brachyspira hyodysenteriae, which has a large impact on pig production and causes important losses due to mortality and sub-optimal performance. Although B. hyodysenteriae has been traditionally considered a pathogen mainly transmitted by direct contact, through the introduction of subclinically infected animals into a previously uninfected herd, recent findings position B. hyodysenteriae as a potential threat for indirect transmission between farms. This article summarizes the knowledge available on the etiological agent of SD and its virulence traits, and reviews the determinants of SD transmission. The between-herds and within-herd transmission routes are addressed. The factors affecting disease transmission are thoroughly discussed, i.e., environmental survival of the pathogen, husbandry factors (production system, production stage, farm management), role of vectors, diet influence and interaction of the microorganism with gut microbiota. Finally, prophylactic and therapeutic approaches to fight against the disease are briefly described. Full article
(This article belongs to the Special Issue Environmental Determinants of Infectious Disease Transmission)
Show Figures

Figure 1

Back to TopTop