Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = surveillance of avian paramyxoviruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2243 KiB  
Article
Detection of a Novel Gull-like Clade of Newcastle Disease Virus and H3N8 Avian Influenza Virus in the Arctic Region of Russia (Taimyr Peninsula)
by Anastasiya Derko, Nikita Dubovitskiy, Alexander Prokudin, Junki Mine, Ryota Tsunekuni, Yuko Uchida, Takehiko Saito, Nikita Kasianov, Arina Loginova, Ivan Sobolev, Sachin Kumar, Alexander Shestopalov and Kirill Sharshov
Viruses 2025, 17(7), 955; https://doi.org/10.3390/v17070955 - 7 Jul 2025
Viewed by 619
Abstract
Wild waterbirds are circulating important RNA viruses, such as avian coronaviruses, avian astroviruses, avian influenza viruses, and avian paramyxoviruses. Waterbird migration routes cover vast territories both within and between continents. The breeding grounds of many species are in the Arctic, but research into [...] Read more.
Wild waterbirds are circulating important RNA viruses, such as avian coronaviruses, avian astroviruses, avian influenza viruses, and avian paramyxoviruses. Waterbird migration routes cover vast territories both within and between continents. The breeding grounds of many species are in the Arctic, but research into this region is rare. This study reports the first Newcastle disease virus (NDV) detection in Arctic Russia. As a result of a five-year study (from 2019 to 2023) of avian paramyxoviruses and avian influenza viruses in wild waterbirds of the Taimyr Peninsula, whole-genome sequences of NDV and H3N8 were obtained. The resulting influenza virus isolate was phylogenetically related to viruses that circulated between 2021 and 2023 in Eurasia, Siberia, and Asia. All NDV sequences were obtained from the Herring gull, and other gull sequences formed a separate gull-like clade in the sub-genotype I.1.2.1, Class II. This may indirectly indicate that different NDV variants adapt to more host species than is commonly believed. Further surveillance of other gull species may help to test the hypothesis of putative gull-specific NDV lineage and better understand their role in the evolution and global spread of NDV. Full article
(This article belongs to the Special Issue Evolution and Adaptation of Avian Viruses)
Show Figures

Figure 1

24 pages, 25327 KiB  
Article
Avian Influenza Virus and Avian Paramyxoviruses in Wild Waterfowl of the Western Coast of the Caspian Sea (2017–2020)
by Tatyana Murashkina, Kirill Sharshov, Alimurad Gadzhiev, Guy Petherbridge, Anastasiya Derko, Ivan Sobolev, Nikita Dubovitskiy, Arina Loginova, Olga Kurskaya, Nikita Kasianov, Marsel Kabilov, Junki Mine, Yuko Uchida, Ryota Tsunekuni, Takehiko Saito, Alexander Alekseev and Alexander Shestopalov
Viruses 2024, 16(4), 598; https://doi.org/10.3390/v16040598 - 12 Apr 2024
Cited by 4 | Viewed by 3275
Abstract
The flyways of many different wild waterfowl pass through the Caspian Sea region. The western coast of the middle Caspian Sea is an area with many wetlands, where wintering grounds with large concentrations of birds are located. It is known that wild waterfowl [...] Read more.
The flyways of many different wild waterfowl pass through the Caspian Sea region. The western coast of the middle Caspian Sea is an area with many wetlands, where wintering grounds with large concentrations of birds are located. It is known that wild waterfowl are a natural reservoir of the influenza A virus. In the mid-2000s, in the north of this region, the mass deaths of swans, gulls, and pelicans from high pathogenicity avian influenza virus (HPAIV) were noted. At present, there is still little known about the presence of avian influenza virus (AIVs) and different avian paramyxoviruses (APMVs) in the region’s waterfowl bird populations. Here, we report the results of monitoring these viruses in the wild waterfowl of the western coast of the middle Caspian Sea from 2017 to 2020. Samples from 1438 individuals of 26 bird species of 7 orders were collected, from which 21 strains of AIV were isolated, amounting to a 1.46% isolation rate of the total number of samples analyzed (none of these birds exhibited external signs of disease). The following subtypes were determined and whole-genome nucleotide sequences of the isolated strains were obtained: H1N1 (n = 2), H3N8 (n = 8), H4N6 (n = 2), H7N3 (n = 2), H8N4 (n = 1), H10N5 (n = 1), and H12N5 (n = 1). No high pathogenicity influenza virus H5 subtype was detected. Phylogenetic analysis of AIV genomes did not reveal any specific pattern for viruses in the Caspian Sea region, showing that all segments belong to the Eurasian clades of classic avian-like influenza viruses. We also did not find the amino acid substitutions in the polymerase complex (PA, PB1, and PB2) that are critical for the increase in virulence or adaptation to mammals. In total, 23 hemagglutinating viruses not related to influenza A virus were also isolated, of which 15 belonged to avian paramyxoviruses. We were able to sequence 12 avian paramyxoviruses of three species, as follows: Newcastle disease virus (n = 4); Avian paramyxovirus 4 (n = 5); and Avian paramyxovirus 6 (n = 3). In the Russian Federation, the Newcastle disease virus of the VII.1.1 sub-genotype was first isolated from a wild bird (common pheasant) in the Caspian Sea region. The five avian paramyxovirus 4 isolates obtained belonged to the common clade in Genotype I, whereas phylogenetic analysis of three isolates of Avian paramyxovirus 6 showed that two isolates, isolated in 2017, belonged to Genotype I and that an isolate identified in 2020 belonged to Genotype II. The continued regular monitoring of AIVs and APMVs, the obtaining of data on the biological properties of isolated strains, and the accumulation of information on virus host species will allow for the adequate planning of epidemiological measures, suggest the most likely routes of spread of the virus, and assist in the prediction of the introduction of the viruses in the western coastal region of the middle Caspian Sea. Full article
Show Figures

Figure 1

17 pages, 1974 KiB  
Article
Discovery of Avian Paramyxoviruses APMV-1 and APMV-6 in Shorebirds and Waterfowl in Southern Ukraine
by Amy C. Klink, Oleksandr Rula, Mykola Sushko, Maksym Bezymennyi, Oleksandr Mezinov, Oleksandr Gaidash, Xiao Bai, Anton Stegniy, Maryna Sapachova, Roman Datsenko, Sergiy Skorokhod, Vitalii Nedosekov, Nichola J. Hill, Levan Ninua, Ganna Kovalenko, Anne Lise Ducluzeau, Andriy Mezhenskyi, Jeremy Buttler, Devin M. Drown, Douglas Causey, Borys Stegniy, Anton Gerilovych, Eric Bortz and Denys Muzykaadd Show full author list remove Hide full author list
Viruses 2023, 15(3), 699; https://doi.org/10.3390/v15030699 - 8 Mar 2023
Cited by 3 | Viewed by 3749
Abstract
Emerging RNA virus infections are a growing concern among domestic poultry industries due to the severe impact they can have on flock health and economic livelihoods. Avian paramyxoviruses (APMV; avulaviruses, AaV) are pathogenic, negative-sense RNA viruses that cause serious infections in the respiratory [...] Read more.
Emerging RNA virus infections are a growing concern among domestic poultry industries due to the severe impact they can have on flock health and economic livelihoods. Avian paramyxoviruses (APMV; avulaviruses, AaV) are pathogenic, negative-sense RNA viruses that cause serious infections in the respiratory and central nervous systems. APMV was detected in multiple avian species during the 2017 wild bird migration season in Ukraine and studied using PCR, virus isolation, and sequencing. Of 4090 wild bird samples collected, mostly from southern Ukraine, eleven isolates were grown in ovo and identified for APMV serotype by hemagglutinin inhibition test as: APMV-1, APMV-4, APMV-6, and APMV-7. To build One Health’s capacity to characterize APMV virulence and analyze the potential risks of spillover to immunologically naïve populations, we sequenced virus genomes in veterinary research labs in Ukraine using a nanopore (MinION) platform. RNA was extracted and amplified using a multiplex tiling primer approach to specifically capture full-length APMV-1 (n = 5) and APMV-6 (n = 2) genomes at high read depth. All APMV-1 and APMV-6 fusion (F) proteins possessed a monobasic cleavage site, suggesting these APMVs were likely low virulence, annually circulating strains. Utilization of this low-cost method will identify gaps in viral evolution and circulation in this understudied but important critical region for Eurasia. Full article
(This article belongs to the Special Issue Newcastle Disease Virus and Other Avian Paramyxoviruses)
Show Figures

Figure 1

12 pages, 1800 KiB  
Case Report
Identification of a Virulent Newcastle Disease Virus Strain Isolated from Pigeons (Columbia livia) in Northeastern Brazil Using Next-Generation Genome Sequencing
by Mylena Ribeiro Pereira, Lais Ceschini Machado, Rodrigo Dias de Oliveira Carvalho, Thaise Yasmine Vasconcelos de Lima Cavalcanti, Givaldo Bom da Silva Filho, Telma de Sousa Lima, Silvio Miguel Castillo Fonseca, Francisco de Assis Leite Souza, Gabriel da Luz Wallau, Fábio de Souza Mendonça and Rafael Freitas de Oliveira Franca
Viruses 2022, 14(7), 1579; https://doi.org/10.3390/v14071579 - 21 Jul 2022
Cited by 5 | Viewed by 5431
Abstract
Newcastle disease virus (NDV), also known as avian paramyxoviruses 1 (APMV-1) is among the most important viruses infecting avian species. Given its widespread circulation, there is a high risk for the reintroduction of virulent strains into the domestic poultry industry, making the surveillance [...] Read more.
Newcastle disease virus (NDV), also known as avian paramyxoviruses 1 (APMV-1) is among the most important viruses infecting avian species. Given its widespread circulation, there is a high risk for the reintroduction of virulent strains into the domestic poultry industry, making the surveillance of wild and domestic birds a crucial process to appropriately respond to novel outbreaks. In the present study, we investigated an outbreak characterized by the identification of sick pigeons in a large municipality in Northeastern Brazil in 2018. The affected pigeons presented neurological signs, including motor incoordination, torticollis, and lethargy. Moribund birds were collected, and through a detailed histopathological analysis we identified severe lymphoplasmacytic meningoencephalitis with perivascular cuffs and gliosis in the central nervous system, and lymphoplasmacytic inflammation in the liver, kidney, and intestine. A total of five pigeons tested positive for NDV, as assessed by rRT-PCR targeted to the M gene. Laboratory virus isolation on Vero E6 cells confirmed infection, after the recovery of infectious NVD from brain and kidney tissues. We next characterized the isolated NDV/pigeon/PE-Brazil/MP003/2018 by next-generation sequencing (NGS). Phylogenetic analysis grouped the virus with other NDV class II isolates from subgenotype VI.2.1.2, including two previous NDV isolates from Brazil in 2014 and 2019. The diversity of aminoacid residues at the fusion F protein cleavage site was analyzed identifying the motif RRQKR↓F, typical of virulent strains. Our results all highlight the importance of virus surveillance in wild and domestic birds, especially given the risk of zoonotic NDV. Full article
(This article belongs to the Special Issue Newcastle Disease Virus and Other Avian Paramyxoviruses)
Show Figures

Figure 1

Back to TopTop