
Citation: Klink, A.C.; Rula, O.;

Sushko, M.; Bezymennyi, M.;

Mezinov, O.; Gaidash, O.; Bai, X.;

Stegniy, A.; Sapachova, M.; Datsenko,

R.; et al. Discovery of Avian

Paramyxoviruses APMV-1 and

APMV-6 in Shorebirds and

Waterfowl in Southern Ukraine.

Viruses 2023, 15, 699. https://

doi.org/10.3390/v15030699

Academic Editor: Kiril M. Dimitrov

Received: 16 June 2022

Revised: 29 September 2022

Accepted: 4 October 2022

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Discovery of Avian Paramyxoviruses APMV-1 and APMV-6 in
Shorebirds and Waterfowl in Southern Ukraine
Amy C. Klink 1, Oleksandr Rula 2, Mykola Sushko 3, Maksym Bezymennyi 4 , Oleksandr Mezinov 5 ,
Oleksandr Gaidash 6,7, Xiao Bai 1, Anton Stegniy 2, Maryna Sapachova 3, Roman Datsenko 3, Sergiy Skorokhod 3,
Vitalii Nedosekov 8 , Nichola J. Hill 9 , Levan Ninua 10, Ganna Kovalenko 1,4,11 , Anne Lise Ducluzeau 12,
Andriy Mezhenskyi 3 , Jeremy Buttler 1,12, Devin M. Drown 12 , Douglas Causey 1 , Borys Stegniy 2,
Anton Gerilovych 2,3, Eric Bortz 1,4,* and Denys Muzyka 2,7,*

1 Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
2 National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 61023 Kharkiv, Ukraine
3 State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise,

03151 Kyiv, Ukraine
4 Institute for Veterinary Medicine, National Academy of Agrarian Sciences, 03151 Kyiv, Ukraine
5 The F.E. Falz-Fein Biosphere Reserve “Askania Nova”, Askania-Nova, 75230 Kakhovka Raion, Ukraine
6 Institute of Natural Sciences, Department of Zoology, H.S. Skovoroda Kharkiv National Pedagogical

University, 61022 Kharkiv, Ukraine
7 Danube Biosphere Reserve, National Academy of Sciences of Ukraine, 68355 Vilkove, Ukraine
8 Department of Epizootology, The National University of Life and Environmental Science of Ukraine,

03041 Kyiv, Ukraine
9 Department of Biology, University of Massachusetts, Boston, MA 02125, USA
10 Institute of Ecology, Ilia State University, Tbilisi 0162, Georgia
11 Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
12 Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
* Correspondence: ebortz@alaska.edu (E.B.); dmuzyka77@gmail.com (D.M.); Tel.: +1-907-786-4858 (E.B.);

+380-990-901-419 (D.M.)

Abstract: Emerging RNA virus infections are a growing concern among domestic poultry industries
due to the severe impact they can have on flock health and economic livelihoods. Avian paramyx-
oviruses (APMV; avulaviruses, AaV) are pathogenic, negative-sense RNA viruses that cause serious
infections in the respiratory and central nervous systems. APMV was detected in multiple avian
species during the 2017 wild bird migration season in Ukraine and studied using PCR, virus isola-
tion, and sequencing. Of 4090 wild bird samples collected, mostly from southern Ukraine, eleven
isolates were grown in ovo and identified for APMV serotype by hemagglutinin inhibition test as:
APMV-1, APMV-4, APMV-6, and APMV-7. To build One Health’s capacity to characterize APMV viru-
lence and analyze the potential risks of spillover to immunologically naïve populations, we sequenced
virus genomes in veterinary research labs in Ukraine using a nanopore (MinION) platform. RNA was
extracted and amplified using a multiplex tiling primer approach to specifically capture full-length
APMV-1 (n = 5) and APMV-6 (n = 2) genomes at high read depth. All APMV-1 and APMV-6 fusion (F)
proteins possessed a monobasic cleavage site, suggesting these APMVs were likely low virulence,
annually circulating strains. Utilization of this low-cost method will identify gaps in viral evolution
and circulation in this understudied but important critical region for Eurasia.

Keywords: viral ecology; surveillance of avian paramyxoviruses; APMV; wild birds; next-generation
sequencing; minion; Azov-Black Sea region in Ukraine

1. Introduction

Avian paramyxoviruses (family Paramyxoviridae; also known as avian avulavirus) are a
highly diverse group of zoonotic, negative-sense, single-stranded RNA viruses detected in a
variety of domestic and wildlife species. Avian paramyxoviruses (APMV) range in genomes
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sizes from 13–17 kilobases (kb) long, comprising 22 unique subtypes or serotypes (1–22)
classified into three distinct genera according to the International Committee on Taxonomy
of Viruses: metaavulavirus (serotypes – 2, 5, 6, 7, 8, 10, 11, 14, 15, 20, 21, 22), orthoavulavirus
(serotypes – 1, 9, 12, 13, 16, 17, 18, 19), and paraavulavirus (serotypes – 3, 4). Among these
species of viruses is avian orthoavulavirus serotype 1 (APMV-1) that commonly induces
Newcastle disease [1]. In previously published research, APMV-1 was commonly referred
to as Newcastle disease virus (NDV), particularly when found in domestic poultry, while
APMV-1 was commonly characterized in wild birds [1]. The pathogenicity of APMV-1 or
NDV ranges from velogenic (high), mesogenic (mild), to lentogenic (low) depending on
the strain, serotype, infected host, and specific molecular characteristics of the proteolytic
cleavage site located in the fusion protein [2]. Severe avulaviruses infections (mainly for
APMV-1 or NDV) cause Newcastle disease (ND) in poultry, with symptoms of depression,
conjunctiva, mucosal excretions from the crop, green diarrhea, hemorrhages, necrosis, and
misshapen egg production [3].

Newcastle disease is an emergent disease and very important for the poultry industry,
which typically induces neurotropic symptoms associated with velogenic ND, including
lethargy, muscle tremors, paralysis, and ultimately death [3]. APMV-1 or NDV has been
shown to elicit severe symptoms and is of the highest concern because of the deleterious
effects it can have on the poultry industry [3,4]. APMV is found worldwide among a variety
of species; however, each serotype will elicit a suite of symptoms depending on the species
infected. The term “serotype” is in common usage for describing APMV subtypes (genetic
groups), but recently sequencing rather than serological analysis has become the main
technique for identifying APMV strains. Serotype or subtype assignment is largely based on
phylogenetics [1,5–7]. Indeed the genetic classification system for APMV, which previously
relied on serological identification and amino acid sequence of large (L) polymerase protein,
was updated to reflect the ability to better capture genetic diversity through phylogenetic
analysis of complete genomes [7,8].

APMV of different subtypes is commonly isolated from poultry and other domesti-
cated birds, although wildlife hosts have been described [5–7,9–12]. APMV-1 is the most
diverse of the subtypes and is classified into two distinct classes (class I or class II) and
further characterized into either 1 (class I) or 15 genotypes (class II) [9]. Class I viruses are
solely isolated from wild birds (e.g., non-farmed birds), while class II viruses encompass
poultry, domesticated, and wild captive populations [9,13]. Little is known about the effects
of other APMV subtypes in wildlife vectors due to the limited amount of data collected.

Aside from APMV-1, other subtypes of avulavirus are less prevalent in domestic
birds and poultry and are instead typically isolated from wild birds. Among these, avian
meta-avualavirus 6 (APMV-6) has been described to cause mild respiratory infection as
well as reproductive implications in poultry and turkeys [3,14,15]. The first description
of APMV-6 was isolated from a domestic duck in Hong Kong in 1977 [14]. APMV-6 can
be characterized into two distinct subgroups based on both the antigenic serotype and
genomic make-up; however, only 38 complete genomes have been sequenced prior to this
study, so the actual diversity of this serotype in nature is unknown [14,16]. APMV-6 is
genetically different from other APMV subtypes because it encodes a small hydrophobic
(SH) protein. The SH protein has been identified in other paramyxoviruses, with a unique
function for the associated virion [14]. The function of the SH protein in APMV-6 is
still unknown, although APMV-6 was hypothesized to be the oldest ancestor of all avian
paramyxoviruses because of the similarity to the SH protein as seen with other viruses in the
Paramyxoviridae family.

The diversity of avian paramyxoviruses is widespread among hosts, but there is
a large gap in knowledge and understanding of the movement and evolution of these
viruses within wild populations [8]. A large portion of the data collected is dependent on
existing bird sampling efforts for other viruses (e.g., avian influenza viruses, or AIV) with a
consequent bias towards geographical regions.
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Ukraine is a hot spot for the detection of avian diseases in wild bird populations
because the geographical region spans three major flyways: East Africa and West Asia, Cen-
tral Asia, and the Black and Mediterranean Seas. Similar to other RNA viruses (e.g., AIV),
the introduction of APMV to naïve poultry populations is thought to be transmitted from
wild migratory birds [6,7,9,11,16]. Horizontal transmission occurs through oropharyngeal
and fecal secretions, thus resulting in a facile route of infection. Birds are highly gregarious
and inhabit similar physical locations, so the potential for transmitting viral pathogens and
commensal microbes is high [17]. APMV and especially APMV-1, as the causative agent of
ND, are important pathogens to control in the Ukrainian poultry industry to maintain a
healthy and thriving poultry industry. Importantly, APMV-1 outbreaks in poultry occur
worldwide, so understanding APMV-1 subtypes and pathotypes have the potential to
contribute to a deeper understanding of APMV distribution and evolution worldwide.

Broad wild bird surveillance for AIV and APMV was conducted from 2006 to 2016 in
Ukraine, in regions observed to be on intercontinental flyways for wild birds in Eurasia
(North–South and East–West flyways). A total of 21,511 samples were collected from
105 species of wild birds representing 27 families and 11 orders. Eighty-two low pathogenic
avian influenza (LPAI) viruses were isolated from wild birds with a total of 23 antigenic
hemagglutinin (HA) and neuraminidase (NA) combinations [18]. Fifteen of the sixteen
known avian influenza HA subtypes were isolated. Five H5N8 highly pathogenic avian
influenza (HPAI) viruses and two H5N2 LPAI viruses were isolated from live wild birds
and environmental samples (fresh bird feces) from samples collected for surveillance to
understand the risks of AIV and APMV outbreaks in poultry [19,20].

In Ukraine, over 154 AIV have been isolated, including 14 AIV hemagglutinin sub-
types detected among 66 wild bird species [18–20]. In previous Ukrainian bird surveillance
efforts, APMV-1, APMV-4, APMV-6, and APMV-7 were detected by serological analyses of
APMV isolated from wild bird samples; however, the genetic sequences and severity of the
associated diseases have been poorly understood. From 2006-2011, twenty APMV viruses
were isolated and serologically identified as APMV-1 (n= 9), APMV-4 (n = 4), APMV-6
(n = 3), and APMV-7 (n = 4) in Ukraine from wild birds from 2006–2011 [12]. Recently
in Ukraine, the diagnosis of APMV and NDV has relied on PCR, virology, and serologi-
cal analysis; however, it can be difficult to distinguish between velogenic and lentogenic
strains of APMV without the whole genome sequence [3]. Sequencing APMV genomes can
alleviate problems with the ambiguity of serological assays and identify genetic charac-
teristics important for pathotyping [9]. To build a genomic sequencing capacity for avian
pathogens, we developed protocols for and deployed the Oxford Nanopore Technologies
(ONT) MinION portable nanopore sequencing platform in sentinel veterinary health labs
in Ukraine. MinION has revolutionized avian disease surveillance efforts in low-resource
regions that previously relied on sending samples to high throughput sequencing labs at a
high cost [21].

Ukraine relies on the agricultural industry, which has an important poultry component
(235–250 million birds) divided between industrial poultry and backyard flocks. The impacts
of Newcastle disease outbreaks on the agricultural industry are large and can affect the
economy [22]. For this reason, surveillance, isolation, and sequencing of APMV of different
subtypes are very important for the persistence of Ukraine’s and Europe’s agricultural
industries. Thus, we isolated and sequenced novel APMV-1 and APMV-6 from wild birds
in Ukraine and analyzed the phylogenetic relationships of these pathogens with known
isolates of APMV from Eurasia.

2. Materials and Methods
2.1. Sample Collection

Wild bird surveillance was conducted from December 2016 to December 2017 in the
northern and southern regions of Ukraine (Figure 1). The research was conducted under
an approved IACUC protocol (NSC IECVM UP-4 IACUC and ethical review, protocols
approved: 18 January 2017; #1–19, 20 February 2019; #2–19, 22 February 2019). In coop-
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eration with ornithologists who helped identify bird species, 4790 fecal (environmental)
samples were collected from 40 species of wild birds (Table S1). Sampling from the wild
birds was conducted according to the standard operating procedures (SOP) describing
biosafety measures for collectors, sample collection and preservation, cryopreservation
(liquid nitrogen), and overland transport. Sample collection was dependent on flock size; at
least 25 samples per 500 birds in the flock and at least 50 samples per 1000 birds in the flock.
Feces were collected only if the origin and type of bird were established. Samples of feces
were taken in a checkerboard pattern at a distance of at least 1.5–2 m from each other to
avoid selecting feces from the same bird. A total of 4315 fecal samples were collected from
the Azov-Black Sea region of Southern Ukraine (Kherson, Odesa, Mykolaiv, Zaporizhzhya
Oblasts), one of the most important regions in Eastern Europe regarding wild birds of
different ecological groups. A total of 475 fecal samples were obtained from wild birds in
northern Ukraine (Chernihiv Oblast).
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Figure 1. Map of locations of samples that were positive for avian paramyxoviruses in southern 
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Figure 1. Map of locations of samples that were positive for avian paramyxoviruses in southern Ukraine.
Environmental (feces) samples from wild birds were collected in southern Ukraine (2016–2017) in
Kherson, Odesa, Mykolaiv, and Zaporizhzhya Oblasts. Locations where samples tested positive for
avian paramyxoviruses by diagnostic RT-PCR are indicated (•). Positive wild bird samples were
found in proximity to brackish or salt water liman and Sivash (bays) in Kherson Oblast near Crimea
and in proximity to Sasyk L(lagoons) and the Danube River Delta region in southern Odesa Oblast.

Samples were collected in cryotubes containing 1.0 mL of viral transport media
(BHI, Brain Heart Infusion broth, Sigma-Aldrich, #53286-100G) with antibiotics (penicillin
10,000 U/mL, streptomycin 10 mg/mL, gentamicin 250 µg/mL, and nystatin 5000 U/mL).
Commercially available powdered concentrates were prepared and sterilized immediately
prior to use [23]. Fecal samples were stored at −196◦ C in liquid nitrogen, where they were
kept until processing.
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2.2. Virus Isolation

Virus isolation from the fecal samples was conducted in accordance with typical OIE
procedures [24,25]. Fecal samples were inoculated in the allantoic cavity of 9–10 day old em-
bryonated chicken eggs and passaged three times in ovo. The presence of hemagglutinating
(HA) viruses in the allantoic fluid was determined by a hemagglutinin inhibition (HI) test
with a 1% suspension of chicken red blood cells [24,25]. Samples from PCR-positive pools
were individually retested to identify positive sample(s).

2.3. Virus Identification

The HA virus subtype was determined by HI tests (previously described, [24–26]). For
these studies, the following antisera were used: H1N1, H2N3, H3N8, H4N6, H5N1, H6N8,
H7N1, H8N4, H9N2, H10N7, H10N9, H11N6, H12N5, H13N6, H14N6, H15N9, H16N3,
APMV-1, APMV-2, APMV-3, APMV-4, APMV-6, APMV-7, APMV-8, and APMV-9 produced
by the Veterinary Laboratories Agency (Animal and Plant Health Agency, Weybridge, UK).
The antisera to H1N1, H2N3, H3N8, H4N8, H5N3, H6N2, H7N3, H8N4, H9N7, H10N1,
H11N9, H12N5, H13N6, H14N5, H15N9, H16N3, APMV-1, APMV -2, APMV-3, APMV-4,
APMV-6, APMV-7, APMV-8, and APMV-9 were produced by the Instituto Zooprofilat-
tio Sperimentale delle Venezie, Padova, Italy. Positive sera produced at NSC IECVM
(Kharkiv, Ukraine) against HPAI virus A/chicken/Syvash/02/2005 (H5N1) and LPAI virus
A/teal/Djankoy/4-17-11/2010 (H5N2) were also used.

2.4. RNA Extraction and Diagnostic RT-PCR for APMV

Pooled samples were analyzed by real-time reverse transcription PCR (RT-PCR). RNA
extraction was performed using QIAamp Viral RNA Mini Kit (QIAGEN). Extracted RNA
was stored at −70 ◦C and used for amplification and detection of APMV-1 in one-step
RT-PCR using AgPath-ID™ one-step RT-PCR Reagents (Applied Biosystems). The RT-PCR
analysis was qualitative by analysis of cycle threshold (Ct) values, with Ct value < 45 con-
sidered positive. Detection of APMV-1 by qRT-PCR was conducted using AgPath-ID™
One-Step RT-PCR reagents and specific primers according to Czegledi et al. (2006) [27]. The
following primers and probe were employed for qRT-PCR [28]: forward primer M+4100: 5′-
AGTGATGTGCTCGGACCTTC-3′; reverse primer M-4220: 5′-CCTGAGGAGAGGCATTTG
CTA-3′; probe M+4169: 5′-[FAM]TTCTCTAGCAGTGGGACAGCCTGC[TAMRA]-3′ All
samples from APMV-1 positive pools were tested by the same method.

2.5. Dataset Development for Genome Assembly

Datasets were created to assemble sequencing reads as well as to reconstruct phy-
logenetic relationships. Sequences were downloaded from the Virus Pathogen Resource
(ViPR, at https://www.viprbrc.org/, accessed on 5 May 2022) or NCBI GenBank (https:
//www.ncbi.nlm.nih.gov/, accessed on 5 May 2022) and were specified to include full-
length viral genomes. Vaccine strains and duplicated sequences were removed from the
dataset. Metadata was collected for each sequence from GenBank or ViPR, including
the following fields: host (common name), sample location, and sample collection date.
Representative sequences from each serotype and subtype were compiled for preliminary
analysis, and genome assembly was conducted as described above.

2.6. Development of Tiling Primers for Full Genome Amplification

Due to the variable viral load in each sample, the RNA was amplified to maximize
sequencing efficiency. Viral RNA was amplified in either 1000 nucleotides (nt) or 1500 nt
regions generated by spanning the viral genome with a 50 or 200 nt overlap using the
Primal Scheme program (http://primal.zibraproject.org/, accessed on 5 May 2022) [29].
The sequences presented here utilized both types of schemes (1000 nt region with 50 nt
overlap; 1500 nt region with 200 nt overlap); however, schemes with a 1500 nt region
or 200 nt overlap were more efficient and cost-effective for amplification (Table S5; .bed
files available upon request, which were used to mask primer sequences during genome

https://www.viprbrc.org/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://primal.zibraproject.org/
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assembly steps). Primers (reverse and forward) were pooled into four pools according to
primal scheme output.

2.7. Amplicon Synthesis, cDNA Library Preparation, and Bioinformatics

APMV genome sequencing allowed the simultaneous identification of serotype (sub-
type) and evaluation of pathotype of the virus. Previous sequencing of virus genomes has
relied on resource-intensive Illumina or Sanger sequencing. With the development of the
Oxford Nanopore Technologies’ (ONT) third generation sequencer, MinION, sequencing
has become portable, inexpensive, and able to produce highly accurate, real-time data
within hours [30].

The RNA was amplified using the Superscript III One Step protocol (Invitrogen)
following the manufacturer’s instructions with the tiling primers described above and the
following thermocycling conditions: 2 min at 55 ◦C, 60 min at 42 ◦C, 2 min at 94 ◦C, 39 cycles
of 30 s at 94 ◦C, 35 s at 55 ◦C, and 2 min at 68 ◦C. The final elongation was set for 5 min at
68 ◦C. SPRI bead clean-up, using Agencourt AMPure XP beads (1:1 sample to beads),
removed impurities from the PCR amplicon preparations for subsequent sequencing steps.
All samples were barcoded using an ONT Native Barcoding kit (EXP-NBD 104) in equimolar
concentrations according to the manufacturer’s protocol. The cDNA library was prepared
using an ONT genomic sequencing ligation kit (SQK-LSK 109) and sequenced for 48 h on a
FLO-MIN 106 flow cell (R9.4.1) using a MinION Mk1B device.

All reads were basecalled using Guppy v3.4.4 (ONT) default parameters. Reads were
demultiplexed, and barcodes were trimmed using Guppy v3.4.4 (ONT; guppy_barcode) de-
fault parameters. Reads were filtered for quality with a q score ≥10 (min_mean_q 90) and a
length ≥200 bp (min_length 200) using Filtlong v.3.0 (https://github.com/rrwick/Filtlong,
accessed on 5 May 2022). Samples with more than 800,000 reads were downsampled
to facilitate the computational analysis by increasing the min_length value based on
the N50 score. AMPV subtype (serotype) assignment was confirmed by mapping reads
to a reference database containing representative sequences from each APMV subtype
(Table S6) using Minimap2 v2.17 [31]. We also validated this assignment by sequence
alignment of APMV L protein using BLAST. Following initial read-based subtyping, reads
were subsequently mapped to a subtype-specific database (e.g., all published APMV-1 or
APMV-6 genomes, respectively as described above in Section 2.5) using Minimap2 (default
parameters) to identify the closest reference genome match [31]. Reads were re-mapped to
the APMV reference genome with the most hits using Minimap2 and further analyzed with
bedtools v2.29.2 to identify the coverage of reads across the genome of each segment [31,32].
Medaka (model r941_min_high) v0.11.5 was used to generate a consensus sequence, and
filtered reads were used as the input. The reference sequence specified earlier was used as
the reference scaffold.

Genomes were assembled by aligning the consensus sequence to the NCBI reference se-
quence GenBank file (containing protein features) using Muscle pairwise aligner v.3.8.425 with
default parameters through Geneious v.11.0.3 program [33]. Genome assemblies indicated sim-
ilar sizes than typical for APMV-1 and APMV-6 and generally >95% genome coverage, with
a small number of ambiguities in some sequences (Figure S1 and Figure S2; Table S7). Ho-
mopolymers, due to sequencing errors were identified in each sample, were manually deleted:
APMV-1/Mallard/Myt Kherson/1-4/4-09/17 had 1 manual deletion, APMV-1/Mallard/AN
Kherson/TM434778/2002 had 4 manual deletions, APMV-6/Environmental/ND Kherson/
41-45/7-08/17 had 2 manual deletions; APMV-6/Mallard/ND Kherson/11-15/4-09/17 had
1 manual deletion; APMV-1/mallard/Dr Kherson /1-3/5-09/17 had 3 manual deletions,
APMV-1/Grey goose/Myt/1-4/4-09/17 had 2 manual deletions, and APMV-1/Shelduck/
Chur/1-5/2-11/17 had 4 manual deletions (Tables S8–S14). We tested the primer amplifica-
tion, nanopore MinION sequencing, and bioinformatics assembly protocols using a lab-grown
vaccine strain of Newcastle disease virus (NDV/APMV-1) La Sota (a kind gift of Dr. Adolfo
García-Sastre, Icahn School of Medicine at Mount Sinai, NY), and captured >99% identity to
the NDV reference strain (AF077761.1).

https://github.com/rrwick/Filtlong
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2.8. Phylogenetic Analysis

Phylogenetic analysis was used to analyze the evolutionary relationships within and
between the APMV-1 and APMV-6 genomes. Sequences were stratified according to APMV
group, host species, year, and location (lowest administrative unit) based on information
contained in the strain name. Downsampling of the published APMV genomes was
performed to allow for a maximum of one sequence for each combination of APMV group,
host, year, and location, resulting in a final dataset of 322 sequences representing genomes
from all 14 subtypes. The sequences were aligned using MAFFT v.7.450-1 with auto
alignment methods and default parameters [34–36]. Alignment was manually edited to
eliminate exogenous features altering the biological integrity of the alignment using Jalview
v2.11.0 [37]. RAxML (Randomized Axelerated Maximum Likelihood) v.8.2.4 with high-
performance computing (HPC) was used to reconstruct maximum likelihood trees using a
generalized time reversible (GTR) substitution model with a gamma rate of heterogeneity
and a 99 random seed parsimony [38]. The significance of trees was tested by bootstrap
support analysis (100 iterations). The bestTree output with the highest likelihood support
was visualized using FigTree v.1.4.4, specifying a midpoint tree root and a decreasing
node order.

In addition, evolutionary relationships among avian avulavirus sequences were in-
ferred using the time-scaled Bayesian approach using BEAST v1.10.4 [39]. An HKY nu-
cleotide substitution model, constant coalescent, and uncorrelated relaxed clock models
were used [40,41]. Four independent Markov Chain Monte Carlo runs were performed,
each having 300,000,000 states and sampling every 30,000 states, to generate trees and
posterior probabilities of nodes.

Potential recombination in APMV-1 and APMV-6 genomes were analyzed using
RDP5 for linear sequences input from the MAFFT alignments, with the following custom
settings: BootScan (200 bootstrap replicates, 95% cutoff), SciScan, 3Seq, LARD model to
estimate base frequencies, recombination rates (LDHAT) with a minor allele cutoff for
AMPV-1 (0.17) and AMPV-6 (0.25), and tree generation, using MrBayes, was performed as
previously described [42].

3. Results
3.1. Avian Avulavirus Detection in Wild Birds in Ukraine

From December 2016 to December 2017, 4790 fresh fecal specimens were collected
from the environment in proximity to wild birds, in conjunction with ornithological sur-
veys of avian populations, ecology, and disease surveillance. Samples were immediately
stored in liquid nitrogen and shipped to veterinary laboratories for screening of avian
influenza and paramyxoviruses by diagnostic RT-PCR and virus isolation in ovo. To un-
cover the host species diversity of AIV and APMV in Ukraine, a broad selection of samples
was collected from 40 avian species from seven different orders: Anseriformes, Charadri-
iforms, Podicipediformes, Gruiformes, Ciconiiformes, Pelecaniformes, and Falconiformes
(Table S1). Samples were collected across avian migratory periods in the Azov-Black
Sea region of Ukraine and in the north, and during the fall migration (August–October),
wintering (November–February), spring migration (March–May), and during localized
movement from June–July that typically occurs after the nesting period.

Eleven samples collected from Odesa (n = 5) and Kherson (n = 6) in southern Ukraine
tested positive for APMV-1 by diagnostic RT-PCR (Figure 1). The APMV-1 infection rate
(by RT-PCR testing) in wild birds was 0.23%, varying from 0.09% to 2.43% (Table S2).
A majority of samples that were PCR-positive for APMV-1 were obtained from waterfowl,
including the white-fronted goose (Anser albifrons) (n = 1), mallard duck (Anas platyrhynchos)
(n = 4), whooper swan (Cygnus cygnus) (n = 1), common shelduck (Tadorna tadorna) (n = 2),
white pelican (Pelecanus onocrotalus, n = 1), and shorebirds, including a Mediterranean gull
(Larus melanocephalus; n = 1), and a snipe (Gallinago gallinago; n = 1) (Table S2). No samples
tested positive in northern Ukraine (Chernihiv Oblast).
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Among the wild bird fecal samples that tested positive by RT-PCR for AIV or APMV,
40 hemagglutinating isolates were amplified by virus isolation in ovo and serotyped by a
hemagglutination inhibition (HI) assay. HI positives included avian influenza (n = 19) and
avian paramyxovirus (n = 11), including those also identified by RT-PCR diagnostic assays.
In 2017, the isolation rate by virus inoculation in ovo of APMV among the screened samples
varied from 0.26% to 1.94%, with the highest rate of isolation in the ruddy shelduck (Tadorna
ferruginea) (Table S3). Among the 11 avulavirus isolates, APMV-1 (n = 6), APMV-4 (n = 2),
APMV-6 (n = 2), and APMV-7 (n = 1) were serotyped by HI assays (Table S4). One sample
showed evidence of both APMV-1 and APMV-7 serotypes, but we were unable to obtain
sequence data to confirm a mixed infection. A portion of positively hemagglutinating
samples was unidentifiable in our serological assays (n = 10: Table S4).

3.2. Sequencing and Phylogenetic Analysis

The genomes of five new APMV-1 and two new APMV-6 isolates were constructed
by reference-based assembly with a range in sizes from 14,098 to 16,235 nt, consistent
with the average sizes of both APMV-1 and APMV-6 (Tables 1 and S7). In general, high-
quality complete genomes were obtained by nanopore sequencing on a MinION device in
veterinary labs in Ukraine. APMV-1/Mallard/Myt Kherson/1-4/4-09/17 had no coverage
until position 885 along the genome and had adequate coverage (>25×) until position 14,530,
where the coverage dropped to 0×, and a small region between 13,680 and 13,998 had
an average 20× coverage; the remaining samples had adequate >25× coverage across the
genome except for the ends in the noncoding regions (Figures 2, S1 and S2; Table S7). Genome
assemblies indicated similar sizes typical for APMV-1 and APMV-6 (Figures S1 and S2;
Table S7). Recombination analysis using RDP5 did not identify evidence of recombination
in the APMV-1 or APMV-6 genomes sequenced in this study.

Table 1. APMV viruses isolated from Ukraine during the 2016–2017 field season. Both APMV-1 and
APMV-6 were predominately isolated from the southern Oblasts of Ukraine. HI = hemagglutinin assay.

Sample Name HI Test Results Sample Description

APMV1|Mallard|Myt_Kherson|1-4-4-09|2017 APMV1
Genetic material (RNA) collected in

September 2017 in Kherson Oblast from a
clinically healthy wild mallard.

APMV1|Mallard|AN_Kherson|TM434778|2002 APMV1
Genetic material (RNA) collected in

December 2002 in Kherson Oblast from a
clinically healthy wild mallard.

APMV-6|Environmental|ND
Kherson|41-45|7-08|2017 APMV6

Genetic material (RNA) collected in August
2017 in Kherson Oblast from

the environment.

APMV-6|Mallard|ND Kherson|11-15|4-09|2017 APMV6
Genetic material (RNA) collected in

September 2017 in Kherson Oblast from a
clinically healthy wild mallard.

APMV-1|Mallard|Dr_Kherson|1-3|5-09|2017 APMV1
Genetic material (RNA) collected in

September 2017 in Kherson Oblast from a
clinically healthy wild mallard.

APMV-1|Grey_Goose|Myt_Kherson|1-4|4-09|2017 APMV1
Genetic material (RNA) collected in

September 2017 in Kherson Oblast from a
clinically healthy wild grey goose.

APMV-1|Shelduck|Chur_Kherson|1-5|2-11|2017 APMV1
Genetic material (RNA) collected in

November 2017 in Kherson Oblast from a
clinically healthy wild shelduck.
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Figure 2. Sequencing coverage depth across full-length genomes for the seven APMV samples
sequenced in this study. Viral RNA was amplified by RT-PCR with a panel of tiling primers covering
the whole genome, and cDNA amplicons were sequenced using MinION. Reads were mapped to a
reference, and coverage depth was calculated with the bedtools genomic arithmetic package.

The APMV-1 and APMV-6 genomes sequenced in this study were compared to 315 full-
length avian avulaviruses with representatives from each subtype (except APMV-17, APMV-18,
and APMV-19 due to a lack of publicly available full-length sequence data), through the
construction of a maximum likelihood (ML) phylogenetic tree (Figure 3). Bayesian analysis
of the same 322 sequenced genomes had a similar topology to the maximum likelihood
analysis (Figure 4). Interpreting the phylogenies, the Ukrainian APMV-1 and APMV-6
sequences showed the highest similarity to the reference sequences used in the genome
assembly. The APMV-1 viruses isolated from Ukraine clustered with duck and other wild
Anseriformes viruses detected across Eurasia, with a subclade in Ukraine and Russia (ML
bootstrap value, 98/100, 100 bootstraps; Bayesian posterior, 0.77) and two distinct sublineage
branches (ML bootstrap value, 98/100, 100 bootstraps; Bayesian posterior, 0.71) that suggested
at least two separate infection events (Figures 3 and 4). Similarly, the APMV-6 viruses formed
subclades that appeared to be the result of multiple distinct infection events (bootstrap
value, 100; Bayesian posterior, 0.92) among ducks and wild Anseriformes originating in
a broad group of APMV-6 sequences spanning Europe and Asia (Figure 4). These results
suggested ecologically diverse APMV-1 and APMV-6 reservoirs in Eurasia, with multiple
host species and broad geographic ranges.
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Figure 3. Global phylogenetic analysis comparing APMV-6 and APMV-1 with all avian avulavirus subtypes. Maximum likelihood tree showing evolutionary
relationships among 322 full-length APMV sequences, including the seven sequenced in this study, and the phylogenetic position of Ukraine APMV-6 and
APMV-1 sequences within their subtypes. APMV-1 strains sequenced in this study are highlighted in blue, and APMV-6 sequenced from this study are highlighted
in purple. Eighty-nine full-lengthh segments are displayed, and the remaining 233 sequences are collapsed at the top of the tree. The collapsed sequences are all
APMV-1 subtypes. Nodes indicate maximum likelihood bootstrap support under using bestTree and visualized in FigTree v.1.4.4 with a midpoint tree root.
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HM159994|APMV2|Gadwell|Kenya|1980

JX987283|APMV4|American_Black_Duck|Delaware_USA|2010

AMPV1|Mallard|AN_Kherson|TM434778|2002

GQ406232|APMV6|Duck|Italy|2007

NC_025374|APMV8|Canada_Goose|Delaware_USA|1976

APMV6|Mallard|ND_Kherson|11-15-4-09|2017

KR338979|APMV1|Chicken|China|2009_03_10

KT186351|APMV1|Duck|South_Korea|2007

EF569970|APMV6|Goose|Russia|2003

JX901129|APMV8|Pintail_Duck|Wakuya_Japan|1978

KX352834|APMV1|Gull|Russia|2014_10

AB759118|APMV6|Red-Necked_Stint|Japan|2008_05_22

KC439346|APMV4|Duck|China|2012

EU403085|APMV3|Parakeet|Netherlands|1975

MH844489.1|APMV20|black_headed_gull|Balkhash|2013

JQ886184|APMV11|Common_Snipe|France|2010_08_25

KT894018|APMV1|Avian|China|2014_03_25

FJ231524|APMV7|Dove|Tennessee_USA|1975

KP001164|APMV1|Duck|China|2011

NC_034968.1|APMV15|calidris_fuscicollis|2012

APMV1|Grey_Goose|Myt_Kherson|1-4-4-09|2017

JN571485|APMV4|Mallard_Duck|Belgium|2007

KJ920203|APMV1|Duck|Russia|2011_10_10

JX524203|APMV1|Chicken|Australia|1966

NC_039015.1|APMV14|duck|Japan|2011

MH423285.2|APMV16|white_fronted_goose|Central_Kazakhstan|2006

EU877976|APMV4|Mallard_Duck|South_Korea|2006

KT071757|APMV2|Finch|Daxinganling_China|2013_05

JX110635|APMV1|Chicken|China|2009_03_03

GU206351|APMV5|Budgerigar|Tokyo_Japan|1974

HM063424|APMV1|Rail|China|2005

KU646513|APMV13|White_Fronted_Goose|Northern_Kazakhstan|2013_09_26

KT071756|APMV2|Pipit|Suiling_China|2013_05

KU662357|APMV1|Duck|Russia|2014_10

EU338414|APMV2|Chicken|California_USA|1956

MH844488.1|APMV20|great_black_headed_gull|Atyrau|2013

KU601398|APMV1|Auk|Russia|2015

NC_028245|APMV2|Chicken|England_United_Kingdom|2006

FJ177514|APMV4|Duck|Hong_Kong_China|1975

KT071755|APMV2|Finch|Suiling_China|2013_05

KF267717|APMV6|Indian_Spot-Billed_Duck|Jilin_China|2011_10_01

EU910942|APMV9|Duck|New_York_USA|1978

JX193081|APMV1|Duck|China|2010

JX401404|APMV1|Duck|South_Korea|2007_11_04

KT962980|APMV6|Common_Teal|Novosibirsk_Russia|2009

LC168750|APMV5|Budgerigar|Japan|1975

JX193077|APMV1|Duck|China|2008

APMV1|Mallard|Myt_Kherson|1-4-4-09|2017
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Viruses 2023, 15, 699 12 of 17

4. Discussion

Avian influenza surveillance in the Azov-Black Sea region in Ukraine has opened
the door for the detection of other avian pathogens such as APMV. A total of 4790 fecal
samples from a variety of birds, predominately from wild waterfowl and shorebirds (the
Anseriformes and Charadiformes orders), were screened for AIV and APMV. In Ukraine, the
mean paramyxovirus isolation rate ranged from 0.26 to 1.94% in a variety of Anseriformes
species (greylag goose, mallard duck, common shelduck, and ruddy shelduck; Table S2)
which is low in comparison with the 2006–2011 sampling seasons [12]. Muzyka et al. (2014)
detected a seasonality effect in the isolation rate, so further analyses will identify whether
there was a seasonality effect during the 2017 season [12]. Eleven samples tested positive
for APMV-1 based on a 121 nt region in the matrix protein. The PCR-positive samples were
found in wild birds of the Anseriformes (n = 8), Chardiiformes (n = 2) and Pelecaniformes
(n = 1) orders (Table S3). The mean infection rate (by PCR detection) of APMV-1 across
species was relatively low, except in white pelicans, who had a 2.43% mean infection rate.
Large outbreaks of virulent APMV have led to large die-offs in cormorants and gulls,
so infection in white pelicans in marine or coastal habitats is not surprising [43,44]. The
circulation of APMV in gulls and pelicans can facilitate transmission if they are near poultry
or other domesticated fowl farms [44].

For APMV, RT-PCR-based diagnostics are the most cost-effective and efficient means
of identifying the virus; however, the hemagglutinin inhibition test has traditionally been
used to determine the subtype. Eleven isolates tested positive for avian avulavirus (APMV1
n =6; APMV-4 n = 4; APMV-6 n = 2; APMV-1/7 n = 7), which is consistent with previous
reports in Ukraine [12,20].

We used full genome sequencing of selected APMV-1 and APMV-6 positive samples to
resolve ambiguities in the HI assay and genetic subtypes of the detected APMV serotypes.
As a mainstay of capacity-building projects, a tiling primer approach combined with
nanopore technology has proven successful in low-resourced laboratories. For example,
this approach has been used to generate highly accurate sequences of Ebola and Zika viruses
in outbreak settings and SARS-CoV-2 and other pathogens in Ukraine [29,30,45]. This study
was the first report of the genome of an APMV-6 isolate from wild birds in Ukraine and the
first use of our tiling and nanopore technology for APMV-1 and APMV-6 sequencing in
sentinel veterinary labs in Ukraine.

Seven full-length genomes were pre-amplified using a tiling primer RT-PCR ap-
proach and sequenced on MinION. For this study, we first tested our methodology in a
well-resourced laboratory at the University of Alaska using an NDV La Sota vaccine strain.
All seven APMV genomes were isolated from the host order Anseriformes: five APMV-1
genomes were isolated from mallards (n = 2), shelducks (n = 2) and a graylag goose
(n = 1), and an additional two APMV-6 genomes were sequenced from a mallard and from
an unidentified, fecal (environmental) sample, respectively. For one of the five APMV-1 se-
quences (APMV-1/Mallard/Myt Kherson/1-4/4-09/17), the 3′ end of the genome was
not assembled, most likely due to insufficient amplification of this region. Four APMV-1
genomes (aside from APMV-1/Mallard/Myt Kherson/1-4/4-09/17) ranged in length from
15,085–15,168 nt. APMV-6 genome length ranged in size from 16,234–16,235 nt and were
consistent with other APMV-6 genomes reported.

Upon further analysis of APMV-1 genomes, virulent strains of APMV-1 depended
on the proteolytic cleavage of a multi-basic amino acid motif in the fusion protein that
facilitated furin-like proteases to stimulate proteolytic cleavage and activation from the host
cell [2,46]. Samples sequenced in the study displayed a mono-basic site, suggesting that all
strains were avirulent [2]. While the viruses sequenced in this study were avirulent, a mild
respiratory infection could still impact a flock and cause economic stress [47]. A previous
evaluation of APMV-6 genomes suggested infections in chickens are asymptomatic or
mild in other species [14,48]. Xiao et al. (2010) analyzed a GAGGGGGAAG motif located
upstream of each protein in the untranslated region except for a matrix protein that had a
GAGGGGGAAC motif. This was consistent with the APMV-6 genomes sequenced in this
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study [14]. Motifs downstream of each protein were conserved among APMV-6 strains and
were found to be consistent in this study [14].

Phylogenetic analysis revealed that all five Ukrainian APMV-1 isolates were closely
related to APMV-1 sequences from other wild birds in Eurasia: a large auk (Uria aalge) in
Tyuleny Island in the Sea of Okhotsk and a Eurasian teal (Anas crecca) from southwest-
ern Siberia (Russian Federation). In addition, the Ukrainian APMV-1 isolates were also
phylogenetically clustered with those sampled from mallards and a water rail (Rallus aquati-
cus) in South Korea and China. These bird species migrate annually between breeding
grounds in Asia and the Siberian tundra and have natural habitats in southern Europe
and Africa as part of the Black Sea–Mediterranean flyway route [49]. Therefore, it is likely
that APMV viruses circulate annually in southern Ukraine, in particular in the Azov-Black
Sea region, since many bird species use this region as a stopover on the flyway during
migration periods.

The reconstructed phylogeny was focused on evaluating the evolutionary history based
on full-length APMV genomes; thus partial sequences previously obtained in Ukraine were
not included in the analysis. The isolate APMV1/Mallard/Myt Kherson/1-4-4-09/2017 failed
full-length assembly due to the low coverage depth at the beginning of the genome (3′-UTR
region). Inadequate sequencing at the beginning and end of the genome in the noncoding
region was consistent when sequencing other RNA viruses, such as Zika, using the tiling
primer approach [29]. Newer, randomly primed, strand-switching amplification protocols
have been recently developed that may complement tiling primer-based sequencing, with
particular strength in the agnostic sequencing of divergent RNA viruses [50]. However, this
protocol was not available at the time of sequencing in Ukraine, and remain to be robustly
tested in low-resourced laboratories or field settings.

The reconstruction of evolutionary relationships for APMV-1 and APMV-6 were
remarkably similar despite belonging to entirely different clades or groups. Evidence
of circulation in wild water birds, primarily belonging to the Anseriformes originating
from Eurasia, was a consistent pattern between APMV groups. The Bayesian analysis
indicated a TMRCA (time to the most recent common ancestor) estimate that APMV-1 and
APMV-6 emerged in the early 2000s, although historical inconsistency and the widespread
ecogeography of APMV sampling make it difficult to clearly represent the temporal origin
of the viruses.

The long-distance movement of wild birds connecting Ukraine to other regions, in-
cluding Europe, Central Asia, and East Asia, plays an important role in the mixing of
virus populations from Europe (west) and Asia (east), consistent with studies of AIV
and APMV in wild bird reservoirs in the Azov-Black Sea wetland ecologies of southern
Ukraine [12,19,20]. While both the maximum likelihood and Bayesian phylogenetic trees
identified similar topologies, APMV sequences are likely under-sampled, given their preva-
lence. Robust sampling efforts are required to classify an emerging viral event in detail.
Since APMV identification and isolation have largely been based on AIV surveillance ef-
forts, there is a historical discrepancy between APMV sampling and sequencing, making it
difficult to predict the exact location and timing of the emergence of the viruses sequenced
in our study.

5. Conclusions

Building from longitudinal surveillance of avian disease pathogens in Ukraine, this
study was the first to isolate and sequence seven full-length avian avulavirus (APMV)
genomes from wild ducks and geese in the Azov-Black Sea region in Ukraine. Five novel
APMV-1 and two APMV-6 genomes were sequenced and clustered with contemporary
circulating strains in Russia, Europe, and East Asia, suggesting a broad but understudied
reservoir and transmission pattern of these pathogens across the Eurasian continents.
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