Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = surface sound velocity disturbance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6072 KiB  
Article
First Open-Coast HF Radar Observations of a 2-Phase Volcanic Tsunami, Tonga 2022
by Belinda Lipa, Donald Barrick, Chad Whelan, Marcel Losekoot and Hardik Parikh
Remote Sens. 2023, 15(9), 2325; https://doi.org/10.3390/rs15092325 - 28 Apr 2023
Cited by 2 | Viewed by 2284
Abstract
We describe results from coastal radar systems that observed anomalous current flows generated by the volcanic eruption in the Tongan archipelago on 15 January 2022 UTC, reporting the first radar detection of a volcanic tsunami. The eruption caused small tsunamis along the western [...] Read more.
We describe results from coastal radar systems that observed anomalous current flows generated by the volcanic eruption in the Tongan archipelago on 15 January 2022 UTC, reporting the first radar detection of a volcanic tsunami. The eruption caused small tsunamis along the western U.S. Coast, generating some damage in a few harbors. The highest tsunami signal in U.S. tide gauge data from the California coast occurred at Arena Cove, with significant heights detected at Port San Luis and Crescent City. We analyze correlated wave orbital velocity detections by High Frequency (HF) radars along the coast between Gerstle Cove and Santa Barbara. Signals observed by the radars indicate that the event had two phases, each with its own distinct genesis: an initial weak surface disturbance, most likely generated by the wave of atmospheric pressure that moved outward from the blast source at just below the speed of sound, followed by a stronger disturbance that arrived approximately 3.5 h later, matching the arrival time for a wave moving entirely through the water from the volcano to the U.S. West Coast. We conclude that this phase consists of a conventional water wave tsunami and weaker waves generated by the pulse. We also report the detection of a small pulse-generated event off the west coast of Florida. Radar observations are compared with water level measurements at nearby tide gauges and a DART buoy, and with observations of barometric pressure. We point out that a Proudman near-resonance at the Tonga Trench is unlikely to explain the second phase observations. Comparison with tide gauge signals at San Francisco, generated by the Krakatoa eruption in 1883, support our conclusions. Full article
Show Figures

Figure 1

20 pages, 15912 KiB  
Article
Reduction in Airfoil Trailing-Edge Noise Using a Pulsed Laser as an Actuator
by Keita Ogura, Yoimi Kojima, Masato Imai, Kohei Konishi, Kazuyuki Nakakita and Masaharu Kameda
Actuators 2023, 12(1), 45; https://doi.org/10.3390/act12010045 - 16 Jan 2023
Cited by 1 | Viewed by 3256
Abstract
Trailing-edge noise (TE noise) is an aeroacoustic sound radiated from an isolated airfoil in the specific ranges of low-speed flow. We used a pulsed laser as an actuator to reduce the TE noise without modifying the airfoil’s surface. The wind tunnel test was [...] Read more.
Trailing-edge noise (TE noise) is an aeroacoustic sound radiated from an isolated airfoil in the specific ranges of low-speed flow. We used a pulsed laser as an actuator to reduce the TE noise without modifying the airfoil’s surface. The wind tunnel test was conducted to verify the capability of an Nd:YAG laser as the actuator. The laser beam was focused into the air just outside the velocity boundary layer on the lower side of an NACA0012 airfoil. The experimental result shows that the TE noise is suppressed for a certain period after beam irradiations. We then analyzed the physical mechanism of the noise reduction with the laser actuation by the implicit large eddy simulation (ILES), a high-fidelity numerical method for computational fluid dynamics (CFD). The numerical investigations indicate that the pulsed energy deposition changes the unstable velocity amplification mode of the boundary layer, the source of an acoustic feedback loop radiating the TE noise, to another mode that does not generate the TE noise. The sound wave attenuation is observed once the induced velocity fluctuations and consequently generated vortices sweep out the flow structure of the unstable mode. We also examined the effect of the laser irradiation zone’s shape by numerical simulations. The results show that the larger irradiation zone, which introduces the disturbances over a wider range in the span direction, is more effective in reducing the TE noise than the shorter focusing length with the same energies. Full article
(This article belongs to the Special Issue Flow Control Actuators and Their Diverse Fluid Dynamic Applications)
Show Figures

Figure 1

16 pages, 4270 KiB  
Article
Investigation on Vertical Position and Sound Velocity Variation for GNSS/Acoustic Seafloor Geodetic Calibration Based on Moving Survey Data
by Rui Shan, Huimin Liu, Shuang Zhao and Haojun Li
Remote Sens. 2022, 14(15), 3739; https://doi.org/10.3390/rs14153739 - 4 Aug 2022
Cited by 4 | Viewed by 2320
Abstract
The accuracy of GNSS/Acoustic seafloor geodetic calibration is greatly influenced by the temporal variation of sound velocity, especially in the vertical direction. Aiming at correcting of the unknown parameters related to both the positions and the sound velocity, this paper proposes a step-by-step [...] Read more.
The accuracy of GNSS/Acoustic seafloor geodetic calibration is greatly influenced by the temporal variation of sound velocity, especially in the vertical direction. Aiming at correcting of the unknown parameters related to both the positions and the sound velocity, this paper proposes a step-by-step inversion scheme based on moving survey data. The proposed method firstly estimates the horizontal normalized travel time delay with sound ray tracing strategy and then computes the horizontal position with circle line observations. We reconstructed an inversion scheme for extracting the surface sound velocity disturbance (SSVD) and corrected the vertical position from cross line data. The SSVD is decomposed into a sum of different period disturbances, and a new SSVD is reconstructed by combining the long period disturbance and short period disturbance. The proposed algorithm is verified by the South China Sea experiment for GNSS/Acoustic seafloor geodetic calibration. The results demonstrate that the new method can take the effects of sound velocity variation into consideration and improve the precision of the vertical position, which is superior to the least squares (LS), the single-difference LS for seafloor geodetic calibration. Full article
(This article belongs to the Special Issue Remote Sensing Technology for New Ocean and Seafloor Monitoring)
Show Figures

Graphical abstract

24 pages, 152898 KiB  
Article
Comparative Analysis of Surface Pressure Fluctuations of High-Speed Train Running in Open-Field and Tunnel Using LES and Wavenumber-Frequency Analysis
by Songjune Lee, Cheolung Cheong, Byunghee Kim and Jaehwan Kim
Appl. Sci. 2021, 11(24), 11702; https://doi.org/10.3390/app112411702 - 9 Dec 2021
Cited by 7 | Viewed by 2688
Abstract
The interior noise of a high-speed train due to the external flow disturbance is more than ever a major problem for product developers to consider during a design state. Since the external surface pressure field induces wall panel vibration of a high-speed train, [...] Read more.
The interior noise of a high-speed train due to the external flow disturbance is more than ever a major problem for product developers to consider during a design state. Since the external surface pressure field induces wall panel vibration of a high-speed train, which in turn generates the interior sound, the first step for low interior noise design is to characterize the surface pressure fluctuations due to external disturbance. In this study, the external flow field of a high-speed train cruising at a speed of 300 km/h in open-field and tunnel are numerically investigated using high-resolution compressible LES (large eddy simulation) techniques, with a focus on characterizing fluctuating surface pressure field according to surrounding conditions of the cruising train, i.e., open-field and tunnel. First, compressible LES schemes with high-resolution grids were employed to accurately predict the exterior flow and acoustic fields around a high-speed train simultaneously. Then, the predicted fluctuating pressure field on the wall panel surface of a train was decomposed into incompressible and compressible ones using the wavenumber-frequency transform, given that the incompressible pressure wave induced by the turbulent eddies within the boundary layer is transported approximately at the mean flow and the compressible pressure wave propagated at the vector sum of the sound speed and the mean flow velocity. Lastly, the power levels due to each pressure field were computed and compared between open-field and tunnel. It was found that there is no significant difference in the power levels of incompressible surface pressure fluctuations between the two cases. However, the decomposed compressible one in the tunnel case is higher by about 2~10 dB than in the open-field case. This result reveals that the increased interior sound of the high-speed train running in a tunnel is due to the compressible surface pressure field. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

Back to TopTop