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Abstract: The accuracy of GNSS/Acoustic seafloor geodetic calibration is greatly influenced by the
temporal variation of sound velocity, especially in the vertical direction. Aiming at correcting of the
unknown parameters related to both the positions and the sound velocity, this paper proposes a
step-by-step inversion scheme based on moving survey data. The proposed method firstly estimates
the horizontal normalized travel time delay with sound ray tracing strategy and then computes
the horizontal position with circle line observations. We reconstructed an inversion scheme for
extracting the surface sound velocity disturbance (SSVD) and corrected the vertical position from
cross line data. The SSVD is decomposed into a sum of different period disturbances, and a new
SSVD is reconstructed by combining the long period disturbance and short period disturbance. The
proposed algorithm is verified by the South China Sea experiment for GNSS/Acoustic seafloor
geodetic calibration. The results demonstrate that the new method can take the effects of sound
velocity variation into consideration and improve the precision of the vertical position, which is
superior to the least squares (LS), the single-difference LS for seafloor geodetic calibration.

Keywords: GNSS/Acoustic; seafloor geodetic calibration; sound ray tracing; surface sound velocity
disturbance; vertical position

1. Introduction

The GNSS/Acoustic (GNSS/A) technique was devised in the 1980s [1], which is a
combination technique of kinematic GNSS positioning and underwater acoustic ranging
for seafloor geodetic absolute positioning. Since the seafloor geodetic benchmarks for
detecting absolute seafloor crustal deformations were established, it has yielded many
significant results, including detection of interseismic [2,3], coseismic [4,5], and postseismic
deformation associated with earthquake [6,7], as well as plate motions [8–11]. However,
the positioning service or deformation analysis using the seafloor benchmarks is affected
by the accuracy of locations of seafloor benchmarks. Thus, it is necessary to improve the
accuracy of the seafloor geodetic absolute calibration and realize efficient observations.

The observation accuracy of GNSS/A is mainly limited by the acoustic ranging error,
especially caused by the temporal fluctuations of sound velocity within the observation
period [12–14]. In general, the sound velocity is generally assumed to be vertically stratified
in seawater with the underwater acoustic signals conforming to Snell’s law. By adopting
the sound ray-tracing (SRT) strategy based on the sound velocity profiles (SVPs) data,
the propagation paths of acoustic signals can be tracked [15,16]. The sound velocity is
not only affected by seasonal and daily variations in ocean conditions but also by more
detailed temporal and spatial variations caused by several factors such as internal waves,
anomalous temperature and water masses [17]. There are difficulties for the SVP data
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to balance real-time and accurate demands due to the time fluctuation of sound velocity
within tens of minutes to a few hours, especially during moving calibration surveys. As
for GNSS/A absolute calibration observation, the single transponder is positioned by
controlling the vessel sailing around a circle with a nominally constant radius [18,19]. The
surveying strategy is effective in precisely determining the horizontal components of the
center transponder, since systematic errors have been cancelled out [2,20]. However, the
accuracy of vertical components remains difficult to improve, limited by the sound velocity
temporal variation, especially surface sound velocity disturbance [21].

Many previous GNSS/A studies have proposed several methods to correct the effect
of sound velocity variation. Osada et al. succeeded in estimating the temporal variation of
sound velocity from acoustic data [22]. Xu et al. proposed a single difference (SD) method
for single point seafloor positioning and the double difference method for relative seafloor
positioning to remove the effect of systematic errors [13]. The simulations have shown
that the accuracy of single point positioning can be determined with one centimeter in the
three dimensions, and the performance remains to be further validated using the field data.
When the reference sound velocity profile is different from the actual profile, it ultimately
affects the discrepancy between the estimation of the propagation time delay. Fujita et al.
removed this effect by using a simple time function to estimate the temporal variation
of the acoustic velocity structure [14]. The results showed that the temporal and spatial
stability of the acoustic velocity structure in the seawater depend on the region and season.
Kido et al. proposed a generalized expression of sound velocity variation in terms of a
travel time residual normalized to the vertical component to acoustically estimated sound
velocity [23]. This method also provides a reference for many future studies [2,5,7,24,25].
Chen et al. estimated the relative positions of three transponders and a constant sound
velocity bias by an optimization technique combined with ray-tracing calculations [26].
The results show that the accuracy of relative positioning is insensitive to the surface sound
velocity disturbance at a depth of 300 m. In the last ten years, analytical procedures with the
estimation of the spatial sound velocity gradient for the moving-around pattern have been
developed. Yokota et al. proposed a technique for extracting the gradient effects of sound
velocity structure through multiple modeling [3]. Honsho et al. showed a more general
expression for one-directional sound velocity gradient, and the accuracy of the seafloor
positioning was also improved by the above inversion scheme [7]. However, most of those
studies have basically adopted the Scripps Institution of Oceanography (SIO) approach [1],
which locates a virtual geodetic station and estimates the sound velocity variation using the
transponders array. In GNSS/Acoustic seafloor geodetic absolute calibration, each seafloor
transponder is an independent geodetic station [27], and the influence of sound velocity
variation on ranging error is intuitively related to various factors such as propagation time,
incidence angle and depth, which increase the complexity of data processing.

There are two key points involved in vertical positioning and sound velocity variation.
One is the observation configuration optimization that can be constructed by designing
different survey lines and the array of seafloor stations, and the other is to determine
the appropriate inversion scheme for solving the optimization problem. As for the data
post-processing, the observation configuration has been determined. Thus, we focus on
the improvement of the inversion scheme. In this contribution, the step-by-step inversion
scheme has been proposed to simplify the difficulty of parameter estimation and to im-
prove the positioning accuracy in the vertical direction based on the moving survey data.
Furthermore, in the experiment, the cross-survey lines over the top of the transponder are
arranged. In order to improve the vertical accuracy and estimation efficiency of the absolute
positions of the seafloor reference stations, we performed a vertical position inversion and
sound velocity perturbation inversions iteratively to obtain the final solutions from cross
line data. Finally, we discuss our results on the South China Sea experiment.
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2. Principles of the GNSS/Acoustic Seafloor Geodetic Move-Around
Calibration Method
2.1. Observation System

A conceptual model of the seafloor absolute calibration system is shown in Figure 1,
which refers to the process of transferring positioning from a surface positioning system
referenced to a global reference frame to a seafloor transponder. This typically involves
the simultaneous observation of the GNSS positioning and the attitudes of a vessel while
acoustically ranging toward the fixed seafloor transponder from a transducer and known
offsets from the GNSS antenna on the vessel. A single transponder is positioned by
controlling the vessel sailing around a circle with a nominally constant radius to remove
systematic errors. By collecting geometrically symmetric data, the positioning accuracy
and observation efficiency tend to be improved [28–31]. In order to ensure geometric
structure of the observation, the radius of the circle that the surveying vessel sails around
is approximately 50% to 150% of the water depth. The distance between the seafloor
transponder and the vessel transducer is estimated by acoustic round-trip traveling time.
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Figure 1. Schematic of the GNSS/Acoustic seafloor geodetic observation system.

The sound velocity can be measured by a velocimetry or computed from measurements
of the water temperature, salinity and pressure using a conductivity temperature depth
(CTD) profiler [32]. However, the temperature varies significantly with time and space,
particularly in shallow parts, and the accuracy of the sound velocity is limited by the
empirical equations that relate these parameters to sound velocity.

2.2. Basic Ray-Tracing Strategy for GNSS/Acoustic Absolute Calibration

The basic principles of the GNSS/Acoustic absolute calibration during an interro-
gation/reply cycle are shown in Figure 2a. When the vessels steam around a circle, the
location of the vessels is changed, and the round-trip traveling time for interrogation and
reply must be calculated separately.
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Figure 2. The round-trip acoustic travel time for one interrogation–reply cycle (a). The geometry
scheme of transducer and transponder i and j stand for different observation cycles (b).

Assuming a laterally stratified sound velocity structure, to estimate the transponder
position PT = [XT YT ZT ] precisely, let PS,k = [XS,k YS,k ZS,k] be the positions of the
transceiver at the time of sending and PR,k = [XR,k YR,k ZR,k] be the positions of the
transceiver at the time of receiving acoustic signals. The observation equation expressing
the round-trip travel time for the seafloor transponder at time k is represented as:

Tm,k = TS,k + TR,k + εk (1)

with
TS,k = f (PT , PS,k, Ck), TR,k = f (PT , PR,k, Ck) (2)

where Tm,k represents the measured round-trip acoustic travel time. As shown in Figure 2a,
the one-way travel time TS,k, TR,k can be calculated using the ray-tracing technique with
sound velocity profile C based on Snell’s law. εk represents the random timing error.

The error equation of round-trip travel time can be expressed as:

Vk = Tm,k − f (PT,o, PS,k, C0)− f (PT,o, PR,k, C0)− ∆TP,k − ∆TC,k, (3)

∆TP,k ≈ f (PT , PS,k, Ck) + f (PT , PR,k, Ck)− f (PT,o + δPT , PS,k, Ck)− f (PT,o + δPT , PR,k, Ck), (4)

∆TC,k ≈ f (PT , PS,k, Ck) + f (PT , PR,k, Ck)− f (PT , PS,k, C0 + δCk)− f (PT , PR,k, C0 + δCk), (5)

where PT,o represents the initial transponder position, C0 represents the reference sound velocity
profile, ∆TP,k and ∆TC,k denote the ray-tracing time error by position basis δPT and sound velocity
temporal variation δC, respectively.

The error sum of squared errors between the measured and calculated travel times is written
as follows:

J(δPT , δCk) =
n

∑
k=1

V2
k , (6)

where n is the number of acoustic observation pairs. When the average sound velocity along the
actual ray path is expressed as Cm, the Euclidean distances and the transceiver and the transponder
position can be calculated with the least square (LS) method; see Appendix A.

Kido et al. represented the temporal variation of sound velocity as a vertically normalized time
delay relative to that for a reference model [23], which is called the Nadir Total Delay (NTD) [24].
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Using the mapping function, the horizontal and vertically normalized travel time delay can be
represented as follows:

δTH,k = Tm,k
2 sin(θS,k) sin(θR,k)

sin(θS,k) + sin(θR,k)
− TS,k sin(θS,k)− TR,k sin(θR,k), (7)

δTV,k = Tm,k
2 cos(θS,k) cos(θR,k)

cos(θS,k) + cos(θR,k)
− TS,k cos(θS,k)− TR,k cos(θR,k), (8)

where the travel-time delay δTH,k and δTV,k normalized by the mapping function are independent of
the vertical and horizontal distance of the transducer, respectively.

Note that, if the sound velocity perturbation δc is a constant bias, based on the geometric sym-
metry of a circular track, the horizontal travel-time residual δTH,k has a smaller effect on horizontal
positioning. Meanwhile, the vertically travel-time residual normalized by the mapping function is in-
dependent of the horizontal distance of the transducer [33]. As shown in Figure 2b, if the depth error
δd exists, the vertically travel-time residual normalized by the mapping function varies depending
on the horizontal distance from the transducer to the transponder. The vertically normalized travel
time delay can be represented as follows:

δTV,i ≈
di√

h2
i + d2

i


√

h2
i + (di + δd)2

C + δc
−

√
h2

i + d2
i

C

, (9)

According to the Equation (9), the vertically normalized travel time delay includes not only
information on the range, but also that on the velocity structure along the path. This also indicates that
the sound velocity error and the depth error cannot be distinguished from the same incident angles
for the transponders. Other observations with different indicant angles are essential to precisely
estimate vertical displacements. During the acoustic absolute calibration, the sound velocity variation
function δc is usually given as a simple time function.

3. Inversion Scheme
3.1. Absolute Horizontal Position Estimation

In this research, the horizontal and vertical position are estimated to utilize a step-by-step
method for moving survey data. We design two kinds of calibration survey lines, as shown in
Figure 3: one is the circular line (Figure 3a), the other is the cross line (Figure 3b).
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In this research, these two types of survey lines are used to calculate the horizontal (2D) and
vertical coordinates of the seabed reference station, respectively. As the LS method with circular
calibration trajectory is insensitive to the sound velocity perturbation, it is possible to calculate the
precision horizontal position precisely. The horizontal position can be used as the constraint to
estimate the vertical position and the surface sound velocity disturbance (SSVD). The unknown



Remote Sens. 2022, 14, 3739 6 of 16

horizontal position can be estimated by solving the nonlinear Equation (7) for all circle line travel time
data using the iterative least squares method. The nonlinear equation is locally linearized as follows:

δTCircle
H,k =

[ sin θS,kδfS
δXT

|XT,o+
sin θR,kδfR

δXT
|XT,o

sin θS,kδfS
δYT

|YT,o +
sin θR,kδfR

δXT
|XT,o

][ δXT
δYT

]
=

[
κS,k sin θS,k(XT,o−XS,k)

HS,k
+

κR,k sin θR,k(XT,o−XR,k)
HR,k

κS,k sin θS,k(YT,o−YS,k)
HS,k

+
κR,k sin θR,k(YT,o−YR,k)

HR,k

][
δXT
δYT

] (10)

where κS,k and κR,k are sending and receiving Snell’s constant and are computed by the ray-tracing.

HS,k =
√
(XT,o −XS,k)

2 + (YT,o − YS,k)
2, and HR,k =

√
(XT,o −XR,k)

2 + (YT,o − YR,k)
2.

The observations of different incident angles through different cross lines are sensitive to
vertical deviation and sound velocity disturbance. Thus, this observation pair also provides basis
information for the inversion of coupled surface sound velocity disturbances and vertical deviations.
To estimate the vertical position, it is necessary to find the best δZT and δCk to minimize the following
objective function:

J(δZT , δCk) =
n

∑
k=1

δT2
V,k (11)

3.2. Surface Sound Velocity Temporal Variation Extraction Method
The absolute position of a transponder and temporal sound velocity variation can be estimated

by finding the best values to minimize Equation (6). A variety of effective optimization algorithms,
e.g., Bayesian least squares inversion [14], numerical optimization approach [26], linearized inversion
method [3], extended Kalman filter [33], one step approach [7], are developed with different kinds of
temporal sound velocity variation. In order to improve the vertical accuracy and estimation efficiency
of the absolute calibration position, we performed a vertical position and sound velocity perturbation
inversions iteratively to obtain the final solutions. The sound velocity perturbation inversion method
was developed by Fujita et al. [14]. The shape of the vertical profile is also assumed to be invariable
with time. Different from Fujita’s method, for the absolute correction of a single transponder, this
study only calculates the surface sound velocity disturbance (SSVD).

As shown in Figure 4, the reference sound velocity profile is divided into two parts: the shallow
water area and the deep water area. Our method takes into account the shallow water sound velocity
disturbances affected by the outside environment and reduces the number of inversion parameters.
Consider that the surface sound velocity disturbance δCk(z) varies in time with depths shallower
than ZSur f ace, then δCk(z) can be rewritten as the sum of intrinsic model functions (IMFs) u and
residual r:

δCk(z) =

rm(k) +
m
∑
i

ui(k) (z ≤ ZSur f ace)

0 (z > ZSur f ace)
, (12)
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Another important step is to calculate the δCk(z) based on vertically normalized travel time
delay δTV and SRT method. In this study, the δCk is calculated using the following SSVD extraction
method (Algorithm 1).

Algorithm 1 Surface sound velocity variation extraction method

1
.

Input: PT,o, PS, PR, Tm, C0(z)
2 Recursive computation:

For k = 1, 2, 3, . . .
C(z) = C0(z);

While True
(1) Compute the gradient of C(z);
(2) Estimate the incident angle θS,k and θR,k;
(3) Estimate the travel time TS,k and TR,k;
(4) Estimate the vertically normalized travel time delay δTV,k using Equation (8);
(5) Estimate the SSVD δCk

If δTV,k < γ

Break;
Else if δTV,k > 0

C(z) =
{

C(z) + κ

C(z)
(z ≤ ZSur f acce)

(z > ZSur f acce)
; (κ is a small search step)

Else

C(z) =
{

C(z)− κ

C(z)
(z ≤ ZSur f acce)

(z > ZSur f acce)
;

End
δCk = C(z)− C0(z);
End for

Output: δC.

Recursions (1)–(3) compute the round-trip travel time based on the classical SRT method.
Recursions (4) estimate the vertically normalized travel time delay δTV,k using Equation (8) and the
round-trip travel time Tm. Recursions (5) compute the SSVD δCk using a small search step to let the
δTV,k be close to zero.

3.3. Absolute Vertical Position and SSVD Estimation
This study utilizes the numerical optimization iterations approach to estimate the vertical posi-

tion of a seafloor transponder and SSVD. For previous research, the SSVD are usually reconstructed
by a combination of series of the basis function:

δCk = α + ∑
i

βiΓi(k) + ηir(k) cos(γ(k)− γa), (13)

where α is a constant of sound velocity, and βi and ηi are the coefficients of the basis function. Γi(t)
represents the basis function with different periods, e.g., second degree polynomial, or quadratic
curve, r(t) is the horizontal distance from transponder to transducer, r(k) cos(γ(k)) indicates the
vessel position at time t, and γa represents the horizontal gradient effect.

Considering the complex of the SSVD during the moving survey, in this research, the δC is
analyzed by the Empirical Mode Decomposition (EMD) method, as shown in Appendix B, which
is a time–frequency analysis method to process non-linear and non-stationary signals [34]. EMD
can decompose the δC to a sum of some IMFs ui with different periods and residual rm adaptively
without any prior knowledge.

δC =
m

∑
i=1

ui + rm, (14)

As shown in Figure 5, for estimating the vertical position and SSVD, two kinds of calibration
survey line observations are used to estimate the horizontal position and vertical position, respectively.
The horizontal position calculated by the circle line is used directly to estimate other unknown
parameters. We utilize a certain acoustic velocity structure to estimate the vertical position with
the cost function J(δZT , δCSur f ace). Then, we recompute the vertically normalized travel time delay.
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The SSVD is extracted using the above SRT method. We iterate this process until the position
parameters converge.
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Figure 5. Algorithm of parameter estimation used to obtain the absolute vertical position and sound
velocity variation.

The EMD method can be utilized to distinguish the effect between the sound velocity variation
and the depth error. The surface sound velocity perturbation might have short time periods and
long time periods, whereas some previous studies have already proved it [17]. In particular, to
distinguish the effect of the vertical basis and the long period disturbance, the relevance index should
be computed and adjusted. In our method, the SSVD is decomposed into a sum of different period
disturbances, and a new SSVD is reconstructed by combining the long period disturbance and short
period disturbance.

4. Experimental Analysis
To analyze the GNSS/Acoustic seafloor geodetic absolute calibration precision, we utilized

data from a moving survey calibration experiment in the South China Sea (19◦42′ N, 115◦08′ E)
with a depth of 1750 m on 3 April 2021, as shown in Figure 6. The raw data mainly included the
GNSS observations, ship attitudes, round trip travel times of acoustic signals, GNSS offset from the
GNSS antenna to the transceiver and sound velocity profiles. The kinematic GNSS observations were
obtained using the Veripos APEX with an approximately horizontal and vertical accuracy 10 and
20 cm, respectively. The attitude of the survey ship was obtained using the POS MV 320 of Applanix
company (Richmond Hill, ON, Canada). The acoustic ranging data was obtained using the HiPap
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102PMGC of Konsberg company (Konsberg, Norway) high precision acoustic positioning system
with ultra-long range capabilities (cymbal model) and a cNODE transponder, measuring the travel
times of acoustic signals with an approximate range accuracy of 0.02 m. During the trial period, a
single transponder was set on the seafloor lander as the entity geodetic station.
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Figure 6. The ship trajectory scheme as it collected GNSS/acoustic data with a lander and mobile
velocity profile.

After the lander was deployed on the seafloor, the vessel sailed according to the predetermined
circle track lines (Figure 7a) and cross track line (Figure 7b) centered on the seafloor station. The
number of all acoustic observations was about 5150, and the sampling rate was 4 s. Table 1 shows the
data list of acoustic measurements at the seafloor reference points.
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Figure 7. Two circles around the seafloor transponder with R = 2000 and R = 1000 (a). A crossing
along the diameter directly above the transponder and a figure eight with the seafloor transponder in
the center with R = 1000 (b).

Table 1. The information of acoustic measurements.

Trajectory Time First Sample Time Last Sample Number of Samples

A circle, R = 2000 3 April 2021 04:11 3 April 2021 06:25 2006
A circle, R = 1000 3 April 2021 06:43 3 April 2021 08:19 1148
A eight, R = 1000 3 April 2021 08:31 3 April 2021 10:27 2004
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As shown in Figure 8a, the average incident angles of the big circle and small circle are 43◦

and 28◦. The incident angles of the cross line (eight track) are distributed from 0◦ to 45◦. Three
sound velocity profilers in seawater were measured by MVP 300 from the AML Oceanographic
company, and the resulting profiles are shown in Figure 8b. The time span of these extracted data
was approximately 6 h, ranging from 3:40:00 to 8:20:00 in Coordinated Universal Time (UTC). The
average profile of three SVPs is utilized as the reference SVP in this study, and the mean velocity is
about 1492 m/s.
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Figure 8. The incident histogram of the three trajectories (a). Sound velocity profiles of the water
column during the GNSS/Acoustic survey (b).

To estimate the absolute horizontal position of a seafloor transponder, we used the circle line
observation. As shown in Figure 9a, the round trip travel times of big circle and small circle track
are approximately 3.4 and 2.7 s, respectively. Using the ray-tracing calculations and Equation (7),
the travel time delay and horizontal normalized travel time delay can be estimated, as shown in
Figure 9b. The root mean square (RMS) values of the travel time delay and horizontal normalized
travel time delay are 0.18 and 0.11 ms, respectively.
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Figure 9. The acoustic round-trip travel time and incident angle of the circle line (a). The travel time
delay and horizontal normalized travel time delay of the circle line (b).

The travel time delay and horizontal normalized travel time delay are utilized to estimate
the horizontal position with LS method, respectively. Figure 10 shows the histogram of acoustic
horizontal range residuals for two LS methods. The RMS of the range residuals for travel time delay
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and horizontal normalized travel time delay are 13.21 and 8.26 cm, respectively. In addition, the
range residuals had mean values of 3.48 and 2.12 cm, respectively. Even though the horizontal range
precision in horizontal positioning is limited by systematic errors, the mean value of slant range
residuals for the circle line is close to zero. Furthermore, the horizontal position can be utilized to
estimate the vertical position and surface sound velocity disturbance.
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To estimate the absolute vertical position of a seafloor transponder, we used the cross line
observation. As shown in Figure 11a, the round trip travel times vary from 2.3 to 3.3 s. Using the
ray-tracing calculations and Equation (8), the travel time delay and vertical normalized travel time
delay can be estimated, as shown in Figure 11b. The root mean square (RMS) values of the travel time
delay and vertical normalized travel time delay are 0.22 and 0.21 ms, respectively. The mean value of
travel time delay and vertical normalized travel time delay are −0.83 and −0.68 ms, respectively. The
effect of the delay on the ranging results in an uncertainty of about half a meter in vertical positioning.
The IMFs of different periods can be calculated according to the SSVD extraction method in Section 3.2
by setting different surface depths as the initial condition. As shown in Figure 12a, the larger the
reference depth is set, the smaller the SSVD value will be. The SSVD can be decomposed with
different IMFs, as shown in Figure 12b. Although the amplitude of IMFs is different, the tendency
of the IMFs with different reference depths is similar. Considering that the temporal and spatial
variation of the surface sound velocity of seawater is more obvious and the variation range is larger,
the reference water depth is selected as 300 m in this paper.



Remote Sens. 2022, 14, 3739 12 of 16

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

To estimate the absolute vertical position of a seafloor transponder, we used the cross 
line observation. As shown in Figure 11a, the round trip travel times vary from 2.3 to 3.3 
s. Using the ray-tracing calculations and Equation (8), the travel time delay and vertical 
normalized travel time delay can be estimated, as shown in Figure 11b. The root mean 
square (RMS) values of the travel time delay and vertical normalized travel time delay are 
0.22 and 0.21 ms, respectively. The mean value of travel time delay and vertical normal-
ized travel time delay are −0.83 and −0.68 ms, respectively. The effect of the delay on the 
ranging results in an uncertainty of about half a meter in vertical positioning. The IMFs of 
different periods can be calculated according to the SSVD extraction method in Section 3.2 
by setting different surface depths as the initial condition. As shown in Figure 12a, the 
larger the reference depth is set, the smaller the SSVD value will be. The SSVD can be 
decomposed with different IMFs, as shown in Figure 12b. Although the amplitude of IMFs 
is different, the tendency of the IMFs with different reference depths is similar. Consider-
ing that the temporal and spatial variation of the surface sound velocity of seawater is 
more obvious and the variation range is larger, the reference water depth is selected as 
300 m in this paper. 

 
 

(a) (b) 

Figure 11. The acoustic round-trip travel time and incident angle of the cross line (a). The travel time 
delay and vertical normalized travel time delay of the cross line (b). 

 

 

(a) (b) 

Figure 12. The histogram of surface sound velocity disturbance with different surface reference 
depths (a). The intrinsic mode functions of surface sound velocity disturbance with different refer-
ence depth using the IMF method (b). 

Figure 11. The acoustic round-trip travel time and incident angle of the cross line (a). The travel time
delay and vertical normalized travel time delay of the cross line (b).

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

To estimate the absolute vertical position of a seafloor transponder, we used the cross 
line observation. As shown in Figure 11a, the round trip travel times vary from 2.3 to 3.3 
s. Using the ray-tracing calculations and Equation (8), the travel time delay and vertical 
normalized travel time delay can be estimated, as shown in Figure 11b. The root mean 
square (RMS) values of the travel time delay and vertical normalized travel time delay are 
0.22 and 0.21 ms, respectively. The mean value of travel time delay and vertical normal-
ized travel time delay are −0.83 and −0.68 ms, respectively. The effect of the delay on the 
ranging results in an uncertainty of about half a meter in vertical positioning. The IMFs of 
different periods can be calculated according to the SSVD extraction method in Section 3.2 
by setting different surface depths as the initial condition. As shown in Figure 12a, the 
larger the reference depth is set, the smaller the SSVD value will be. The SSVD can be 
decomposed with different IMFs, as shown in Figure 12b. Although the amplitude of IMFs 
is different, the tendency of the IMFs with different reference depths is similar. Consider-
ing that the temporal and spatial variation of the surface sound velocity of seawater is 
more obvious and the variation range is larger, the reference water depth is selected as 
300 m in this paper. 

 
 

(a) (b) 

Figure 11. The acoustic round-trip travel time and incident angle of the cross line (a). The travel time 
delay and vertical normalized travel time delay of the cross line (b). 

 

 

(a) (b) 

Figure 12. The histogram of surface sound velocity disturbance with different surface reference 
depths (a). The intrinsic mode functions of surface sound velocity disturbance with different refer-
ence depth using the IMF method (b). 

Figure 12. The histogram of surface sound velocity disturbance with different surface reference
depths (a). The intrinsic mode functions of surface sound velocity disturbance with different reference
depth using the IMF method (b).

The vertical position and SSVD can be estimated by the new numerical iterations approach
mentioned in Section 3.3. The new SSVD is constructed using IMFs of different cycles and is then
used to iteratively calculate the vertical component. As shown in Figure 13a,b, the vertical range
residual with different iterations reduced step by step, and the periodic fluctuations associated with
SSVD were gradually eliminated.

The LS method, least squares with unknown sound velocity (LS + C) method in which the
average bias of sound velocity is regarded as unknown parameters, the SD least squares method,
and the new numerical iterations approach were conducted and compared for underwater acoustic
positioning. Table 2 presents the residuals statistics of different algorithms for vertical position. For
the case of underwater 1750 m depth, the vertical RMS of SD and new method are 18.6 and 7.3 cm
compared to the 32.6 cm of LS, with an improvement of 42.9% and 77.6%. The vertical Max and Mean
of the new method is significantly better than the other three schemes.
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Table 2. The residuals statistics of all methods for vertical position.

Method RMS (cm) Max (cm) Mean (|VV|) (cm)

LS 32.6 104.1 25.9
LS + C 26.5 82.2 18.6

SD 18.6 72.8 14.7
New method 7.3 26.7 5.7

5. Conclusions
This study presents an approach of correction for vertical position and sound velocity variation

on GNSS/Acoustic seafloor geodetic calibration with moving survey data. The horizontal and vertical
positions are estimated to utilize a step-by-step method with circle and cross line survey data. After
the validation from a real example, the following conclusions can be drawn.

For the horizontal position component, the symmetric circle line reduced the influence of sound
velocity errors and ensured the correctness of the horizontal estimation. The horizontal position can
be utilized to estimate the vertical position and surface sound velocity disturbance.

To overcome the vertical defects of the GNSS/acoustic technique, the new numerical iterations
were studied. We utilize a certain acoustic velocity structure to estimate the vertical position and
SSVD with the vertical normalized travel time delay of the cross line. The SSVD is decomposed into a
sum of different period disturbances, and a new SSVD is reconstructed by combining the long period
disturbance and short period disturbance. The estimation results illustrated that the GNSS/acoustic
calibration precision can be improved by implementing the numerical iterations method.
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Appendix A

When the average sound velocity along the actual ray path is expressed as Cm, the Euclidean
distances between the transceiver and the transponder are calculated as follows:

CmTm,k = ρS,k + ρR,k + ∆ρC,k + ωk

=
√
(xT − xS,k)

2 + (yT − yS,k)
2 + (zT − zS,k)

2 +
√
(xT − xR,k)

2 + (yT − yR,k)
2 + (zT − zR,k)

2 + ∆ρC,k + ωk
(A1)

where δc is the sound velocity perturbation, ∆ρC,k = (TS,k + TR,k)δc is the sound velocity error and
ωk represents the random error. By linearizing Equation (A1), the error equation of round-trip range
observation can be represented as follows:

vk = ak · δPT − (CmTm,k − ρo,k − ∆ρk) (A2)

ρo,k =
√
(xT,o − xS,k)

2 + (yT,o − yS,k)
2 + (zT,o − zS,k)

2 +
√
(xT,o − xR,k)

2 + (yT,o − yR,k)
2 + (zT,o − zR,k)

2 (A3)

ak =
[
sin θS,k cosγS,k + sin θR,k cosγR,k sin θS,k sinγS,k + sin θR,k sinγR,k cos θR,k + cos θR,k

]
(A4)

where ak denotes the partial derivatives of the distance function with respect to the unknown position parameters.
γS,k and γR,k are represented as the sending and receiving azimuth angle, respectively.

As shown in Figure 2b, if the sound velocity error ∆ρC,k is negligible, based on Equation (A2) and the
least-squares methods, the correction of δPT can be estimated as follows:

δPT = (ATA)
−1

ATL (A5)

where A = [aT
1 aT

2 . . . aT
n ]

T , L = [vT
1 vT

2 . . . vT
n ]

T .

Appendix B

With respect to the Empirical Mode Decomposition (EMD), signals can be decomposed as Instrinsic Mode
Functions (IMFs) subjected to the following conditions:

(1) In the whole data set, the number of extrema and the number of zero crossing must either equal or differ
at most by one;

(2) At any data point, the mean value of the envelope defined using the local maxima and the envelope
defined using the local minima is zero.

The decomposition of one-dimensional signal can be presented as:

x(t) =
n

∑
i=1

im fi(t) + rn(t) (A6)

where im fi(t) stands for intrinsic model functions, and rn(t) stands for the monotonic residual functions.
The EMD algorithm is accomplished through a sifting process, and the main process is as follows:
Step 1: calculate the extrema of signal x(t);
Step 2: calculate the envelopes emin(t) and emax(t) corresponding to the minima and maxima, respectively;
Step 3: calculate the mean value of envelops m(t) = (emin(t) + emax(t))/2;
Step 4: extract the details d(t) = x(t)−m(t);
Step 5: repeat Steps 1–4 to extract details until the mean value of d(t) is zero, and then this d(t) is regarded

as one IMF;
Step 6: calculate the residual r(t) = x(t)− im fi(t);
Step 7: repeat the following steps until there are no IMFs in the residual, and the decomposition process of

EMD has been finished thus far.
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