Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = surface atomic diffusion blocking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6305 KB  
Article
A Study on the Spectral Characteristics of 83.4 nm Extreme Ultraviolet Filters
by Qian Liu, Aiming Zhou, Hanlin Wang, Pingxu Wang, Chen Tao, Guang Zhang, Xiaodong Wang and Bo Chen
Coatings 2025, 15(5), 535; https://doi.org/10.3390/coatings15050535 - 30 Apr 2025
Viewed by 1170
Abstract
Extreme ultraviolet (EUV) imagers are key tools to monitor the space environment and forecast space weather. EUV filters are important components to block radiation in the ultraviolet (UV), visible, and near-infrared (IR) regions. In this study, various characterization methods were proposed for the [...] Read more.
Extreme ultraviolet (EUV) imagers are key tools to monitor the space environment and forecast space weather. EUV filters are important components to block radiation in the ultraviolet (UV), visible, and near-infrared (IR) regions. In this study, various characterization methods were proposed for the nickel mesh-supported indium (In) filter, and their spectral characteristics were comprehensively studied. The material and thickness of the filter were chosen based on atomic scattering principles, determined through theoretical calculation and software simulation. The metal film was deposited using the vacuum-resistive thermal evaporation method. The measured transmission of the filter was 10.06% at 83.4 nm. The surface elements of the sample were analyzed using X-ray photoelectron spectroscopy (XPS). The surface and cross-sectional morphologies of the filter were observed using a scanning electron microscope (SEM). The impact of the oxide layer and carbon contamination on the filter’s transmittance was investigated using an ellipsometer. A multilayer “In-In2O3-C” model was established to determine the thickness of both the oxide layer and carbon contamination layer on the filter. This model introduces the filling factor based on the original model and considers the diffusion of the contamination layer, resulting in more accurate fitting results. The transmittance of the filter in the visible light range was measured using a UV-VIS spectrophotometer, and the measurement error was analyzed. This article provides preparation methods and test methods for the 83.4 nm EUV filter and conducts a detailed analysis of the spectral characteristics of the prepared optical filters, which hold significant value for space exploration applications. Full article
Show Figures

Figure 1

17 pages, 6885 KB  
Article
A Theoretical and Experimental Study of the Effects of (Mo, Ti, Ni) Microalloying on the Structure, Stability, Electronic Properties, and Corrosion Resistance to Chlorinated Molten Salts of B2-FeAl
by Weiqian Chen, Peiqing La, Lei Wan and Xiaoming Jiang
Coatings 2025, 15(3), 269; https://doi.org/10.3390/coatings15030269 - 24 Feb 2025
Viewed by 1067
Abstract
The effects of X-doping (X = Mo, Ti, Ni) on the structure, stability, and electronic properties of B2-FeAl supercells, as well as the migration behavior of Cl atoms between interstitial sites and the corrosion behavior of FeAl coatings in molten chloride, were investigated [...] Read more.
The effects of X-doping (X = Mo, Ti, Ni) on the structure, stability, and electronic properties of B2-FeAl supercells, as well as the migration behavior of Cl atoms between interstitial sites and the corrosion behavior of FeAl coatings in molten chloride, were investigated by combining the first principles based on density functional theory (DFT) experiments. Our results confirmed that Mo and Ti atoms are more likely to replace Al atoms in B2-FeAl supercells, while Ni atoms preferentially replace Fe atoms. A single Cl atom is more inclined to be adsorbed at the tetrahedral (Tet) interstitial site of bulk B2-FeAl, and its formation energy Ef=− 2.504 eV, indicating that it can very easily invade FeAl alloys. (Mo, Ti, Ni) doping inhibited the diffusion of Cl atoms in the bulk B2-FeAl configuration and enhanced the corrosion resistance of the material to chlorinated molten salts, and Ti doping (overcoming the energy barrier by 0.326 eV) had the most obvious blocking effect. Based on the theoretical conclusions, this experimental study prepared an FeAl coating on 310S stainless steel with a Ni content of 20.22 wt.% at 800 °C for 15 h, which was then annealed at 900 °C for 25 h, and Ni was uniformly dissolved in the B2-FeAl phase. Subsequently, the annealed FeAl coating was corroded in molten chlorinated salts at 800 °C for 100 h, and an oxide layer with a thickness of 25–35 µm formed on the surface; the main components of this layer were Al2O3, NiFe2O4, and their solid solutions, which significantly improved the corrosion resistance of 310S stainless steel to chlorinated molten salt. Full article
Show Figures

Figure 1

17 pages, 31244 KB  
Article
Mechanical Properties and High-Temperature Steam Oxidation of Cr/CrN Multi-Layers Produced by High-Power Impulse Magnetron Sputtering
by Ding Chen, Daoxuan Liang, Wei Dai, Qimin Wang, Jun Yan and Junfeng Wang
Coatings 2025, 15(2), 185; https://doi.org/10.3390/coatings15020185 - 6 Feb 2025
Cited by 2 | Viewed by 1959
Abstract
In this study, Cr coatings, CrN coatings, and CrN/Cr multi-layer coatings were deposited on the surface of Zr-4 alloy by high-power impulse magnetron sputtering (HiPIMS). We have investigated the effect of coating structure on the microstructure, mechanical properties, and high-temperature steam oxidation properties [...] Read more.
In this study, Cr coatings, CrN coatings, and CrN/Cr multi-layer coatings were deposited on the surface of Zr-4 alloy by high-power impulse magnetron sputtering (HiPIMS). We have investigated the effect of coating structure on the microstructure, mechanical properties, and high-temperature steam oxidation properties of coatings. The results show that the single-layer CrN coating has higher hardness but performs poorly in high-temperature steam oxidation compared to the Cr coating due to its greater brittleness, which makes it prone to cracking and spalling in high-temperature steam environments and provides a channel for Zr diffusion. In multi-layer coatings, however, they form a fine columnar crystal structure and a smoother surface, and the more layers there are, the better the mechanical properties and resistance to high-temperature steam oxidation of the coating. In a high-temperature steam environment, the CrN layer decomposes to form Cr2N and N2, and the N atoms diffuse inwards and react with Zr to form an α-Zr(N) layer, which restricts interdiffusion between Cr and Zr and blocks the diffusion of O into the substrate. Therefore, (CrN/Cr)n coatings with a multi-layer structure have excellent high-temperature steam corrosion resistance. Full article
Show Figures

Figure 1

16 pages, 4824 KB  
Article
Atomistic Insight into the Effects of Collision Angle on the Characteristics of Cu-Ta Joining by Explosive Welding
by Van-Thuc Nguyen, Nguyen Quang Hien, Pham Minh Duc, Tran Duy Nam, Van Huong Hoang and Van Thanh Tien Nguyen
Metals 2025, 15(1), 94; https://doi.org/10.3390/met15010094 - 19 Jan 2025
Viewed by 1366
Abstract
This study aims to examine how the collision angle affects the Cu-Ta weld generated by the explosive welding method using molecular dynamics modeling. When two blocks collide, the metallic substrates melt rapidly. Subsequently, when heat energy dissipates to the surrounding areas, the weld [...] Read more.
This study aims to examine how the collision angle affects the Cu-Ta weld generated by the explosive welding method using molecular dynamics modeling. When two blocks collide, the metallic substrates melt rapidly. Subsequently, when heat energy dissipates to the surrounding areas, the weld interface begins rapidly cooling. Eventually, the weld joint’s surface shape and temperature stabilize. A meta-solid solution state between Cu and Ta could develop under extreme collision conditions of explosive welding through a dynamic diffusion mechanism. Furthermore, the plastic deformation process of the face-centered cubic (FCC) matrix after the explosive collision causes twin boundary scattering in the Cu substrate. The stress evolution experiences three stages: quick increasing, spreading out, and stabling. The stress mainly concentrates on the weld joint. Due to its dynamic recrystallization mechanism, the Cu substrate has a lower residual stress level than the Ta substrate. The atomic strain of the Cu-Ta weld joint improves dramatically as the impact angle increases. The high-strain zone extends toward the lower Ta block between 5° and 15°. Furthermore, the atomic strain and amorphous structure rates increase when the impact angles increase from 5° to 15°. After further improvement up to 20°, they then suffer a decrease. The Cu-Ta weld achieves a tensile strength ranging from 6.37 to 8.94 GPa. The Cu/Cu-Ta/Cu welding joint’s interface is coherent, transforming from an amorphous to a body-centered cubic (BCC) structure. Because of the dynamic diffusion mechanism at the interface, which creates an almost identical atomic rate between Cu and Ta atoms, combined with the dynamic recrystallization phenomenon, explosive welding provides the advantage of combining two low-solubility solid-solution metals. Full article
Show Figures

Figure 1

9 pages, 2900 KB  
Article
Enhanced Performance of GaAs Metal-Oxide-Semiconductor Capacitors Using a TaON/GeON Dual Interlayer
by Lu Liu, Wanyu Li, Fei Li and Jingping Xu
Nanomaterials 2023, 13(19), 2673; https://doi.org/10.3390/nano13192673 - 29 Sep 2023
Cited by 3 | Viewed by 1631
Abstract
In this work, a dual interfacial passivation layer (IPL) consisting of TaON/GeON is implemented in GaAs metal-oxide-semiconductor (MOS) capacitors with ZrTaON as a high-k layer to obtain superior interfacial and electrical properties. As compared to the samples with only GeON IPL or no [...] Read more.
In this work, a dual interfacial passivation layer (IPL) consisting of TaON/GeON is implemented in GaAs metal-oxide-semiconductor (MOS) capacitors with ZrTaON as a high-k layer to obtain superior interfacial and electrical properties. As compared to the samples with only GeON IPL or no IPL, the sample with the dual IPL of TaON/GeON exhibits the best performance: low interface-state density (1.31 × 1012 cm−2 eV−1), small gate leakage current density (1.62 × 10−5 A cm−2 at Vfb + 1 V) and large equivalent dielectric constant (18.0). These exceptional results can be attributed to the effective blocking action of the TaON/GeON dual IPL. It efficiently prevents the out-diffusion of Ga/As atoms and the in-diffusion of oxygen, thereby safeguarding the gate stack against degradation. Additionally, the insertion of the thin TaON layer successfully hinders the interdiffusion of Zr/Ge atoms, thus averting any reaction between Zr and Ge. Consequently, the occurrence of defects in the gate stack and at/near the GaAs surface is significantly reduced. Full article
Show Figures

Figure 1

21 pages, 11194 KB  
Article
Effects of Printing Layer Orientation on the High-Frequency Bending-Fatigue Life and Tensile Strength of Additively Manufactured 17-4 PH Stainless Steel
by Hamed Ghadimi, Arash P. Jirandehi, Saber Nemati, Huan Ding, Abdelrahman Garbie, Jonathan Raush, Congyuan Zeng and Shengmin Guo
Materials 2023, 16(2), 469; https://doi.org/10.3390/ma16020469 - 4 Jan 2023
Cited by 20 | Viewed by 3577
Abstract
In this paper, small blocks of 17-4 PH stainless steel were manufactured via extrusion-based bound powder extrusion (BPE)/atomic diffusion additive manufacturing (ADAM) technology in two different orientations. Ultrasonic bending-fatigue and uniaxial tensile tests were carried out on the test specimens prepared from the [...] Read more.
In this paper, small blocks of 17-4 PH stainless steel were manufactured via extrusion-based bound powder extrusion (BPE)/atomic diffusion additive manufacturing (ADAM) technology in two different orientations. Ultrasonic bending-fatigue and uniaxial tensile tests were carried out on the test specimens prepared from the AM blocks. Specifically, a recently-introduced small-size specimen design is employed to carry out time-efficient fatigue tests. Based on the results of the testing, the stress–life (S-N) curves were created in the very high-cycle fatigue (VHCF) regime. The effects of the printing orientation on the fatigue life and tensile strength were discussed, supported by fractography taken from the specimens’ fracture surfaces. The findings of the tensile test and the fatigue test revealed that vertically-oriented test specimens had lower ductility and a shorter fatigue life than their horizontally-oriented counterparts. The resulting S-N curves were also compared against existing data in the open literature. It is concluded that the large-sized pores (which originated from the extrusion process) along the track boundaries strongly affect the fatigue life and elongation of the AM parts. Full article
Show Figures

Figure 1

14 pages, 6252 KB  
Article
Cold Spray of Nickel-Based Alloy Coating on Cast Iron for Restoration and Surface Enhancement
by Adrian Wei-Yee Tan, Nataniel Yong Syn Tham, Yao Shian Chua, Kaiqiang Wu, Wen Sun, Erjia Liu, Sung Chyn Tan and Wei Zhou
Coatings 2022, 12(6), 765; https://doi.org/10.3390/coatings12060765 - 2 Jun 2022
Cited by 23 | Viewed by 5271
Abstract
Cold spray is an emerging additive manufacturing process that allows particles to be coated onto the surface of a base material without melting. It is suitable to repair components made from temperature-sensitive materials, such as grey cast iron, which cannot be easily restored [...] Read more.
Cold spray is an emerging additive manufacturing process that allows particles to be coated onto the surface of a base material without melting. It is suitable to repair components made from temperature-sensitive materials, such as grey cast iron, which cannot be easily restored using conventional methods like welding or thermal spray. In this study, the nickel-based alloy Inconel 625 was successfully coated onto a grey cast iron (GJL250) using a cold spray process, and extensive experiments were carried out to study the effects of diffusion between the coating and the substrate after heat treatment at 400, 600, 850 and 1050 °C for 3 and 6 hours durations. The coatings in all conditions were dense (0.25% to 3%) and had defect-free interfaces. Under heat treatment, the diffusion layer increased in thickness with increasing temperature and duration due to atomic diffusion. The Inconel 625 coating is also shown to be effective against oxide growth as compared to grey cast iron. The hardness of the coatings is also stable at high temperatures. The heat-treated coatings at 600 °C achieved a peak hardness of around 500 HV, which is 30% and 60% higher than the as-sprayed coating and grey cast iron substrate, respectively, because of the possible formation of recrystallized nanostructured grains and strengthening precipitates. These findings demonstrate the potential application of using cold spray on nickel-based alloy coatings for restoration and surface enhancement of grey cast iron components, such as engine blocks and pump housings. Full article
(This article belongs to the Special Issue Tribological Coatings: Nanomaterials for Macroscale)
Show Figures

Figure 1

12 pages, 3418 KB  
Article
Reduction of Surface Residual Lithium Compounds for Single-Crystal LiNi0.6Mn0.2Co0.2O2 via Al2O3 Atomic Layer Deposition and Post-Annealing
by Jiawei Li, Junren Xiang, Ge Yi, Yuanting Tang, Huachen Shao, Xiao Liu, Bin Shan and Rong Chen
Coatings 2022, 12(1), 84; https://doi.org/10.3390/coatings12010084 - 12 Jan 2022
Cited by 20 | Viewed by 6331
Abstract
Surface residual lithium compounds of Ni-rich cathodes are tremendous obstacles to electrochemical performance due to blocking ion/electron transfer and arousing surface instability. Herein, ultrathin and uniform Al2O3 coating via atomic layer deposition (ALD) coupled with the post-annealing process is reported [...] Read more.
Surface residual lithium compounds of Ni-rich cathodes are tremendous obstacles to electrochemical performance due to blocking ion/electron transfer and arousing surface instability. Herein, ultrathin and uniform Al2O3 coating via atomic layer deposition (ALD) coupled with the post-annealing process is reported to reduce residual lithium compounds on single-crystal LiNi0.6Mn0.2Co0.2O2 (NCM622). Surface composition characterizations indicate that LiOH is obviously reduced after Al2O3 growth on NCM622. Subsequent post-annealing treatment causes the consumption of Li2CO3 along with the diffusion of Al atoms into the surface layer of NCM622. The NCM622 modified by Al2O3 coating and post-annealing exhibits excellent cycling stability, the capacity retention of which reaches 92.2% after 300 cycles at 1 C, much higher than that of pristine NCM622 (34.8%). Reduced residual lithium compounds on NCM622 can greatly decrease the formation of LiF and the degree of Li+/Ni2+ cation mixing after discharge–charge cycling, which is the key to the improvement of cycling stability. Full article
(This article belongs to the Special Issue Surface Coating in Advanced Energy Storage Devices)
Show Figures

Graphical abstract

22 pages, 8670 KB  
Article
Proven Anti-Wetting Properties of Molybdenum Tested for High-Temperature Corrosion-Resistance with Potential Application in the Aluminum Industry
by François Gitzhofer, James Aluha, Pierre-Olivier Langlois, Faranak Barandehfard, Thabang A. Ntho and Nicolas Abatzoglou
Materials 2021, 14(18), 5355; https://doi.org/10.3390/ma14185355 - 16 Sep 2021
Cited by 2 | Viewed by 3266
Abstract
The behavior of Mo in contact with molten Al was modelled by classical molecular dynamics (CMD) simulation of a pure Mo solid in contact with molten Al at 1200 K using the Materials Studio®. Results showed that no reaction or cross [...] Read more.
The behavior of Mo in contact with molten Al was modelled by classical molecular dynamics (CMD) simulation of a pure Mo solid in contact with molten Al at 1200 K using the Materials Studio®. Results showed that no reaction or cross diffusion of atoms occurs at the Mo(s)–Al(l) interface, and that molten Al atoms exhibit an epitaxial alignment with the exposed solid Mo crystal morphology. Furthermore, the two phases {Mo(s) and Al(l)} are predicted to interact with weak van der Waals forces and give interfacial energy of about 203 mJ/m2. Surface energy measurements by the sessile drop experiment using the van Oss–Chaudhury–Good (VCG) theory established a Mo(s)–Al(l) interface energy equivalent to 54 mJ/m2, which supports the weak van der Waals interaction. The corrosion resistance of a high purity (99.97%) Mo block was then tested in a molten alloy of 5% Mg mixed in Al (Al-5 wt.%Mg) at 1123 K for 96 h, using the ALCAN’s standard “immersion” test, and the results are presented. No Mo was found to be dissolved in the molten Al-Mg alloy. However, a 20% mass loss in the Mo block was due to intergranular corrosion scissoring the Mo block in the ALCAN test, but not as a result of the reaction of pure Mo with the molten Al-Mg alloy. It was observed that the Al-Mg alloy did not stick to the Mo block. Full article
Show Figures

Figure 1

15 pages, 6708 KB  
Article
Numerical Analysis of the Welding Behaviors in Micro-Copper Bumps
by Yeong-Maw Hwang, Cheng-Tang Pan, Bo-Syun Chen and Sheng-Rui Jian
Metals 2021, 11(3), 460; https://doi.org/10.3390/met11030460 - 11 Mar 2021
Cited by 4 | Viewed by 2766
Abstract
In this study, three-dimensional simulations of the ultrasonic vibration bonding process of micro-copper blocks were conducted using the finite element method. We analyzed the effects of ultrasonic vibration frequency on the stress field, strain field, and temperature field at the copper bump joint [...] Read more.
In this study, three-dimensional simulations of the ultrasonic vibration bonding process of micro-copper blocks were conducted using the finite element method. We analyzed the effects of ultrasonic vibration frequency on the stress field, strain field, and temperature field at the copper bump joint surface. The results showed that the bonding process is successfully simulated at room temperature. The stress curve of the bonding process could be divided into three stages: stress rising stage, stress falling stage, and stress stabilization stage. Moreover, it was found that the end of the curve exhibited characteristics of a solid solution phase at higher frequencies. It is hypothesized that the high-density dislocations formed at this stage may result in conveyance channels that facilitate the atomic diffusion at the contact surface. The simulation results indicated that copper micro-bump bonding occurs at an ultrasonic frequency of 50 kHz or higher. Full article
(This article belongs to the Special Issue Numerical Simulation of Metals Welding Process)
Show Figures

Figure 1

15 pages, 2673 KB  
Article
Tackling the Stability Issues of Silver Nanowire Transparent Conductive Films through FeCl3 Dilute Solution Treatment
by Xikun Chu, Ke Wang, Jingqi Tao, Shuxin Li, Shulin Ji and Changhui Ye
Nanomaterials 2019, 9(4), 533; https://doi.org/10.3390/nano9040533 - 3 Apr 2019
Cited by 30 | Viewed by 5491
Abstract
Silver nanowires (AgNWs) have been investigated as alternatives to indium tin oxide in transparent conductive films (TCFs) for electronics. However, AgNW TCFs still pose stability issues when exposed to thermal, chemical, and mechanical stimuli. Herein, we demonstrate a facile and effective route to [...] Read more.
Silver nanowires (AgNWs) have been investigated as alternatives to indium tin oxide in transparent conductive films (TCFs) for electronics. However, AgNW TCFs still pose stability issues when exposed to thermal, chemical, and mechanical stimuli. Herein, we demonstrate a facile and effective route to improve stability by treating the films with dilute ferric chloride solution. Our results indicate that after treatment the films exhibit a dramatically enhanced stability against aging, high temperature oxidation, chemical etching, sulfurization, and mechanical straining. Size-dependent instability is fully explored and explained regarding surface atomic diffusion, which could be blocked by enhancing the activation energy of surface diffusion through forming a AgCl cap under ferric chloride solution treatment. Chemisorption-related Fermi level shift of silver nanowires is applied to tune their chemical reactivity to ferric chloride solution for balancing between size-dependent stability improvement and maintaining optoelectrical properties. Owing to the dilute treatment solution, the treated films exhibit a negligible change in light transmittance, whereas sheet resistance decreases by 30% and flexibility increases because of capillary-force-induced welding of contacting AgNWs and AgCl layer mediated tightening. These findings are significant for real-world applications of AgNW TCFs. Full article
Show Figures

Figure 1

21 pages, 10294 KB  
Article
Synthesis of Nano-Zinc Oxide Loaded on Mesoporous Silica by Coordination Effect and Its Photocatalytic Degradation Property of Methyl Orange
by Zhichuan Shen, Hongjun Zhou, Huayao Chen, Hua Xu, Chunhua Feng and Xinhua Zhou
Nanomaterials 2018, 8(5), 317; https://doi.org/10.3390/nano8050317 - 9 May 2018
Cited by 66 | Viewed by 7800
Abstract
Salicylaldimine-modified mesoporous silica (Sal-MCM-3 and Sal-MCM-9) was prepared through a co-condensation method with different amounts of added salicylaldimine. With the coordination from the salicylaldimine, zinc ions were impregnated on Sal-MCM-3 and Sal-MCM-9. Then, Zn-Sal-MCM-3 and Zn-Sal-MCM-9 were calcined to obtain nano-zinc oxide loaded [...] Read more.
Salicylaldimine-modified mesoporous silica (Sal-MCM-3 and Sal-MCM-9) was prepared through a co-condensation method with different amounts of added salicylaldimine. With the coordination from the salicylaldimine, zinc ions were impregnated on Sal-MCM-3 and Sal-MCM-9. Then, Zn-Sal-MCM-3 and Zn-Sal-MCM-9 were calcined to obtain nano-zinc oxide loaded on mesoporous silica (ZnO-MCM-3 and ZnO-MCM-9). The material structures were systematically studied by Fourier transform infrared spectroscopy (FTIR), N2 adsorption/desorption measurements, X-ray powder diffraction (XRD), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet diffused reflectance spectrum (UV-vis DRS), and thermogravimetry (TGA). Methyl orange (MO) was used to investigate the photocatalysis behavior of ZnO-MCM-3 and ZnO-MCM-9. The results confirmed that nano ZnO was loaded in the channels as well as the outside surface of mesoporous silica (MCM-41). The modification of salicylaldimine helped MCM-41 to load more nano ZnO on MCM-41. When the modification amount of salicylaldimine was one-ninth and one-third of the mass of the silicon source, respectively, the load of nano ZnO on ZnO-MCM-9 and ZnO-MCM-3 had atomic concentrations of 1.27 and 2.03, respectively. ZnO loaded on ZnO-MCM-9 had a wurtzite structure, while ZnO loaded on ZnO-MCM-3 was not in the same crystalline group. The blocking effect caused by nano ZnO in the channels reduced the orderliness of MCM-41. The photodegradation of MO can be divided in two processes, which are mainly controlled by the surface areas of ZnO-MCM and the loading amount of nano ZnO, respectively. The pseudo-first-order model was more suitable for the photodegradation process. Full article
Show Figures

Graphical abstract

15 pages, 7172 KB  
Article
Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages
by Tadas Juknius, Modestas Ružauskas, Tomas Tamulevičius, Rita Šiugždinienė, Indrė Juknienė, Andrius Vasiliauskas, Aušrinė Jurkevičiūtė and Sigitas Tamulevičius
Materials 2016, 9(5), 371; https://doi.org/10.3390/ma9050371 - 13 May 2016
Cited by 45 | Viewed by 9110
Abstract
In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied [...] Read more.
In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique). The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile. Full article
(This article belongs to the Special Issue Advances and Applications of Nano-antimicrobial Treatments)
Show Figures

Graphical abstract

Back to TopTop