Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = surf amenity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8207 KiB  
Article
Wave Peel Tracking: A New Approach for Assessing Surf Amenity and Analysis of Breaking Waves
by Michael Thompson, Ivan Zelich, Evan Watterson and Tom E. Baldock
Remote Sens. 2021, 13(17), 3372; https://doi.org/10.3390/rs13173372 - 25 Aug 2021
Cited by 10 | Viewed by 4877
Abstract
The creation and protection of surfing breaks along populated coastlines have become a consideration for many councils and governments as surfing breaks are a major driver of tourism. To assess the surf amenity of surfing breaks, a quantitative and objective assessment method is [...] Read more.
The creation and protection of surfing breaks along populated coastlines have become a consideration for many councils and governments as surfing breaks are a major driver of tourism. To assess the surf amenity of surfing breaks, a quantitative and objective assessment method is required. A new wave peel tracking (WPT) method has been developed using a shore-based camera to assess surf amenity by measuring and quantifying potential surfing ride rate, length, duration, speed and direction on a wave-by-wave basis. The wave peel (or “curl” below the wave peak) is the optimal surfing region on a wave, and each wave peel track represents a surfable ride. Wave peel regions are identified, classified and tracked using traditional and machine learning-based computer vision techniques. The methodology is validated by comparing the rectified wave peel tracks with GPS-measured tracks from surfers in the wave peel regions. The WPT methodology is evaluated with data from a reef and adjacent natural beach at the Gold Coast, Australia. The reef produced longer ride lengths than the nearshore region and showed a consistent breaking location along the reef crest. Spatial maps of the wave peel tracks show the influence of tides on the wave breaking patterns and intensity. The WPT algorithm provides a robust, automated method for quantifying surf amenity to provide baseline data for surf break conservation. The methodology has potential uses to verify numerical modelling of surf breaks and to assess the impact of coastal development on surf breaks. Full article
(This article belongs to the Special Issue Advances in Remote Sensing in Coastal and Hydraulic Engineering)
Show Figures

Graphical abstract

20 pages, 9959 KiB  
Article
Beach Morphodynamic Response to a Submerged Reef
by Douglas Duarte Nemes, Francisco Fabián Criado-Sudau and Marcos Nicolás Gallo
Water 2019, 11(2), 340; https://doi.org/10.3390/w11020340 - 18 Feb 2019
Cited by 17 | Viewed by 4974
Abstract
To develop beach engineering, the submerged structure’s primary physical functions have to be understood. This study focuses on submerged structures in order to understand the strategy of reduced wave energy, stabilizing the shoreline and not generating erosion or adversely modifying coastal processes. Important [...] Read more.
To develop beach engineering, the submerged structure’s primary physical functions have to be understood. This study focuses on submerged structures in order to understand the strategy of reduced wave energy, stabilizing the shoreline and not generating erosion or adversely modifying coastal processes. Important developments have been made since the 1990s, taking into account the functions of recreational amenity. However, non-dimensional models cannot explain the physical mechanisms that generate accretion or erosion morphological features in the lee of the submerged structure. The present study aims to collaborate with the understanding of the mechanism of beach response to a submerged structure. For this, 26 surveys were made using topographic, Lagrangian, and Eulerian hydrodynamic measures during one seasonal cycle of a beach system from Rio de Janeiro (Brazil) with a natural submerged reef or rocky bank V-shape in the plan. This beach system is energetic and intermediate when referring to wave energy conditions and beach states, respectively. The wave breaking vector system on the rocky bank’s geometry was examined in the intermediate and dissipative beach morphodynamic organization. The variability of the wave breaking vector system determines the establishment, deformation, and erosion features in the lee of the structure. During high-energy waves, the submerged structure’s hydrodynamic and morphodynamic processes are transparent. When the submerged structure combines with the dissipative beach state, the surfing wave conditions are improved. These results provide the dimensional and positional references for an engineering proposal for a beach system. Full article
(This article belongs to the Special Issue Wave-structure Interaction Processes in Coastal Engineering)
Show Figures

Figure 1

26 pages, 4315 KiB  
Article
Modelling Offshore Wave farms for Coastal Process Impact Assessment: Waves, Beach Morphology, and Water Users
by Christopher Stokes and Daniel C. Conley
Energies 2018, 11(10), 2517; https://doi.org/10.3390/en11102517 - 21 Sep 2018
Cited by 12 | Viewed by 4492
Abstract
The emerging global wave energy industry has the potential to contribute to the world’s energy needs, but careful consideration of potential impacts to coastal processes in the form of an impact assessment is required for each new wave energy site. Methods for conducting [...] Read more.
The emerging global wave energy industry has the potential to contribute to the world’s energy needs, but careful consideration of potential impacts to coastal processes in the form of an impact assessment is required for each new wave energy site. Methods for conducting a coastal processes impact assessment for wave energy arrays vary considerably in the scientific literature, particularly with respect to characterising the energy absorption of a wave energy converter (WEC) array in a wave model. In this paper, modelling methods used in the scientific literature to study wave farm impacts on coastal processes are reviewed, with the aim of determining modelling guidance for impact assessments. Effects on wave climate, beach morphology, and the surfing resource for coastal water users are considered. A novel parameterisation for the WEC array transmission coefficient is presented that, for the first time, uses the permitted power rating of the wave farm, which is usually well defined at the impact assessment stage, to estimate the maximum likely absorption of a permitted WEC array. A coastal processes impact assessment case study from a wave farm in south-west Ireland is used to illustrate the application of the reviewed methods, and demonstrates that using the new ‘rated power transmission coefficient’ rather than a WEC-derived transmission coefficient or complete energy absorption scenario can make the difference between significant and non-significant levels of coastal impacts being predicted. Full article
(This article belongs to the Special Issue Wave and Tidal Energy)
Show Figures

Figure 1

Back to TopTop