Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = superparamagnetic nanoparticle embedded graphene oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10341 KiB  
Article
Superparamagnetic ZnFe2O4 Nanoparticles-Reduced Graphene Oxide-Polyurethane Resin Based Nanocomposites for Electromagnetic Interference Shielding Application
by Raghvendra Singh Yadav, Anju, Thaiskang Jamatia, Ivo Kuřitka, Jarmila Vilčáková, David Škoda, Pavel Urbánek, Michal Machovský, Milan Masař, Michal Urbánek, Lukas Kalina and Jaromir Havlica
Nanomaterials 2021, 11(5), 1112; https://doi.org/10.3390/nano11051112 - 25 Apr 2021
Cited by 29 | Viewed by 5195
Abstract
Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled [...] Read more.
Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled via sonochemical synthesis time. The average crystallite size increases from 3.0 nm to 4.0 nm with a rise of sonication time from 25 min to 100 min. The change of physical properties of ZnFe2O4 nanoparticles with the increase of sonication time was observed. The prepared ZnFe2O4 nanoparticles show superparamagnetic behavior. The prepared ZnFe2O4 nanoparticles (ZS25, ZS50, and ZS100) and reduced graphene oxide (RGO) were embedded in a polyurethane resin (PUR) matrix as a shield against electromagnetic pollution. The ultra-sonication method has been used for the preparation of nanocomposites. The total shielding effectiveness (SET) value for the prepared nanocomposites was studied at a thickness of 1 mm in the range of 8.2–12.4 GHz. The high attenuation constant (α) value of the prepared ZS100-RGO-PUR nanocomposite as compared with other samples recommended high absorption of electromagnetic waves. The existence of electric-magnetic nanofillers in the resin matrix delivered the inclusive acts of magnetic loss, dielectric loss, appropriate attenuation constant, and effective impedance matching. The synergistic effect of ZnFe2O4 and RGO in the PUR matrix led to high interfacial polarization and, consequently, significant absorption of the electromagnetic waves. The outcomes and methods also assure an inventive and competent approach to develop lightweight and flexible polyurethane resin matrix-based nanocomposites, consisting of superparamagnetic zinc ferrite nanoparticles and reduced graphene oxide as a shield against electromagnetic pollution. Full article
Show Figures

Figure 1

12 pages, 3913 KiB  
Article
Magnetic Graphene-Based Sheets for Bacteria Capture and Destruction Using a High-Frequency Magnetic Field
by Andri Hardiansyah, Ming-Chien Yang, Hung-Liang Liao, Yu-Wei Cheng, Fredina Destyorini, Yuyun Irmawati, Chi-Ming Liu, Ming-Chi Yung, Chuan-Chih Hsu and Ting-Yu Liu
Nanomaterials 2020, 10(4), 674; https://doi.org/10.3390/nano10040674 - 3 Apr 2020
Cited by 14 | Viewed by 3773
Abstract
Magnetic reduced graphene oxide (MRGO) sheets were prepared by embedding Fe3O4 nanoparticles on polyvinylpyrrolidone (PVP) and poly(diallyldimethylammonium chloride) (PDDA)-modified graphene oxide (GO) sheets for bacteria capture and destruction under a high-frequency magnetic field (HFMF). The characteristics of MRGO sheets were [...] Read more.
Magnetic reduced graphene oxide (MRGO) sheets were prepared by embedding Fe3O4 nanoparticles on polyvinylpyrrolidone (PVP) and poly(diallyldimethylammonium chloride) (PDDA)-modified graphene oxide (GO) sheets for bacteria capture and destruction under a high-frequency magnetic field (HFMF). The characteristics of MRGO sheets were evaluated systematically by transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential measurement, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that magnetic nanoparticles (8–10 nm) were dispersed on MRGO sheets. VSM measurements confirmed the superparamagnetic characteristics of the MRGO sheets. Under HFMF exposure, the temperature of MRGO sheets increased from 25 to 42 °C. Furthermore, we investigated the capability of MRGO sheets to capture and destroy bacteria (Staphylococcus aureus). The results show that MRGO sheets could capture bacteria and kill them through an HFMF, showing a great potential in magnetic separation and antibacterial application. Full article
(This article belongs to the Special Issue Magnetic Nanoparticle-Based Hyperthermia and Theranostics)
Show Figures

Graphical abstract

14 pages, 2561 KiB  
Article
Silica-Coated Magnetic Iron Oxide Nanoparticles Grafted onto Graphene Oxide for Protein Isolation
by Xuan-Hung Pham, Eunil Hahm, Hyung-Mo Kim, Byung Sung Son, Ahla Jo, Jaehyun An, Tuong An Tran Thi, Dinh Quan Nguyen and Bong-Hyun Jun
Nanomaterials 2020, 10(1), 117; https://doi.org/10.3390/nano10010117 - 8 Jan 2020
Cited by 66 | Viewed by 8176
Abstract
In this study, silica-coated magnetic iron oxide nanoparticles (MNPs@SiO2) were covalently conjugated onto graphene oxide (GO/MNP@SiO2) for protein isolation. First, MNPs were precisely coated with a silica layer on the surface by using the reverse microemulsion method, followed by [...] Read more.
In this study, silica-coated magnetic iron oxide nanoparticles (MNPs@SiO2) were covalently conjugated onto graphene oxide (GO/MNP@SiO2) for protein isolation. First, MNPs were precisely coated with a silica layer on the surface by using the reverse microemulsion method, followed by incubation with 3-glycidyloxypropyltrimethoxysilane (GPTS) to produce the GPTS-functionalized MNPs@SiO2 (GPTS-coated MNPs@SiO2) that display epoxy groups on the surface. The silica shell on the MNPs was optimized at 300 µL of Igepal®CO-520, 5 mg of MNP, 100 µL of TEOS, 100 µL of NH4OH and 3% of 3-glycidyloxypropyltrimethoxysilane (GPTS). Simultaneously, polyethyleneimine (PEI) was covalently conjugated to GO to enhance the stability of GO in aqueous solutions and create the reaction sites with epoxy groups on the surface of GPTS-coated MNP@SiO2. The ratio of PEI grafted GO and GPTS-coated MNP@SiO2 (GO/MNP ratio) was investigated to produce GO/MNPs@SiO2 with highly saturated magnetization without aggregation. As a result, the GO/MNP ratio of 5 was the best condition to produce the GO/MNP@SiO2 with 9.53 emu/g of saturation superparamagnetization at a magnetic field of 2.0 (T). Finally, the GO/MNPs@SiO2 were used to separate bovine serum albumin (BSA) to investigate its protein isolation ability. The quantity of BSA adsorbed onto 1 mg of GO/MNP@SiO2 increased sharply over time to reach 628 ± 9.3 µg/mg after 15 min, which was 3.5-fold-higher than that of GPTS-coated MNP@SiO2. This result suggests that the GO/MNP@SiO2 nanostructure can be used for protein isolation. Full article
(This article belongs to the Special Issue Nano-Hybrids: Synthesis, Characterization and Applications)
Show Figures

Figure 1

Back to TopTop