Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = supercritical CO2 fucoxanthin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1812 KiB  
Article
Supercritical Fluid Extraction of Fucoxanthin from the Diatom Phaeodactylum tricornutum and Biogas Production through Anaerobic Digestion
by Mari Carmen Ruiz-Domínguez, Francisca Salinas, Elena Medina, Bárbara Rincón, Marí Ángeles Martín, Marí Carmen Gutiérrez and Pedro Cerezal-Mezquita
Mar. Drugs 2022, 20(2), 127; https://doi.org/10.3390/md20020127 - 7 Feb 2022
Cited by 21 | Viewed by 4642
Abstract
Phaeodactylum tricornutum is the marine diatom best known for high-value compounds that are useful in aquaculture and food area. In this study, fucoxanthin was first extracted from the diatom using supercritical fluid extraction (SFE) and then using the extracted diatom-like substrate to produce [...] Read more.
Phaeodactylum tricornutum is the marine diatom best known for high-value compounds that are useful in aquaculture and food area. In this study, fucoxanthin was first extracted from the diatom using supercritical fluid extraction (SFE) and then using the extracted diatom-like substrate to produce bioenergy through anaerobic digestion (AD) processes. Factors such as temperature (30 °C and 50 °C), pressure (20, 30, and 40 MPa), and ethanol (co-solvent concentration from 10% to 50% v/v) were optimized for improving the yield, purity, and recovery of fucoxanthin extracted using SFE. The highest yield (24.41% w/w) was obtained at 30 MPa, 30 °C, and 30% ethanol but the highest fucoxanthin purity and recovery (85.03mg/g extract and 66.60% w/w, respectively) were obtained at 30 MPa, 30 °C, and 40%ethanol. Furthermore, ethanol as a factor had the most significant effect on the overall process of SFE. Subsequently, P.tricornutum biomass and SFE-extracted diatom were used as substrates for biogas production through AD. The effect of fucoxanthin was studied on the yield of AD, which resulted in 77.15 ± 3.85 LSTP CH4/kg volatile solids (VS) and 56.66 ± 1.90 LSTP CH4/kg VS for the whole diatom and the extracted P.tricornutum, respectively. Therefore, P.tricornutuman can be considered a potential source of fucoxanthin and methane and both productions will contribute to the sustainability of the algae-biorefinery processes. Full article
(This article belongs to the Special Issue Green Chemistry in Marine Natural Product Research)
Show Figures

Graphical abstract

17 pages, 1672 KiB  
Article
Application of Box-Behnken Design and Desirability Function for Green Prospection of Bioactive Compounds from Isochrysis galbana
by Mari Carmen Ruiz-Domínguez, Pedro Cerezal, Francisca Salinas, Elena Medina and Gabriel Renato-Castro
Appl. Sci. 2020, 10(8), 2789; https://doi.org/10.3390/app10082789 - 17 Apr 2020
Cited by 14 | Viewed by 3530
Abstract
A microalga, Isochrysis galbana, was chosen in this study for its potent natural antioxidant composition. A broad bioactive compounds spectrum such as carotenoids, fatty acid polyunsaturated (PUFA), and antioxidant activity are described with numerous functional properties. However, most of the optimization of [...] Read more.
A microalga, Isochrysis galbana, was chosen in this study for its potent natural antioxidant composition. A broad bioactive compounds spectrum such as carotenoids, fatty acid polyunsaturated (PUFA), and antioxidant activity are described with numerous functional properties. However, most of the optimization of extraction use toxic solvents or consume a lot of it becoming an environmental concern. In this research, a Box-Behnken design with desirability function was used to prospect the bioactive composition by supercritical fluid extraction (SFE) after performing the kinetics curve to obtain the optimal extraction time minimizing operational costs in the process. The parameters studied were: pressure (20–40 MPa), temperature (40–60 °C), and co-solvent (0–8% ethanol) with a CO2 flow rate of 7.2 g/min for 120 min. The response variables evaluated in I. galbana were extraction yield, carotenoids content and recovery, total phenols, antioxidant activity (TEAC method, trolox equivalents antioxidant capacity method), and fatty acid profile and content. In general, improvement in all variables was observed using an increase in ethanol concentration used as a co-solvent (8% v/v ethanol) high pressure (40 MPa), and moderately high temperature (50 °C). The fatty acids profile was rich in polyunsaturated fatty acid (PUFA) primarily linoleic acid (C18:2) and linolenic acid (C18:3). Therefore, I. galbana extracts obtained by supercritical fluid extraction showed relevant functional ingredients for use in food and nutraceutical industries. Full article
(This article belongs to the Special Issue Marine Resources Application Potential for Biotechnological Purposes)
Show Figures

Figure 1

16 pages, 402 KiB  
Article
Valorization of Sargassum muticum Biomass According to the Biorefinery Concept
by Elena M. Balboa, Andrés Moure and Herminia Domínguez
Mar. Drugs 2015, 13(6), 3745-3760; https://doi.org/10.3390/md13063745 - 11 Jun 2015
Cited by 89 | Viewed by 14801
Abstract
The biorefinery concept integrates processes and technologies for an efficient biomass conversion using all components of a feedstock. Sargassum muticum is an invasive brown algae which could be regarded as a renewable resource susceptible of individual valorization of the constituent fractions into high [...] Read more.
The biorefinery concept integrates processes and technologies for an efficient biomass conversion using all components of a feedstock. Sargassum muticum is an invasive brown algae which could be regarded as a renewable resource susceptible of individual valorization of the constituent fractions into high added-value compounds. Microwave drying technology can be proposed before conventional ethanol extraction of algal biomass, and supercritical fluid extraction with CO2 was useful to extract fucoxanthin and for the fractionation of crude ethanol extracts. Hydrothermal processing is proposed to fractionate the algal biomass and to solubilize the fucoidan and phlorotannin fractions. Membrane technology was proposed to concentrate these fractions and obtain salt- and arsenic-free saccharidic fractions. Based on these technologies, this study presents a multipurpose process to obtain six different products with potential applications for nutraceutical, cosmetic and pharmaceutical industries. Full article
Show Figures

Graphical abstract

21 pages, 800 KiB  
Article
Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction
by Saravana Periaswamy Sivagnanam, Shipeng Yin, Jae Hyung Choi, Yong Beom Park, Hee Chul Woo and Byung Soo Chun
Mar. Drugs 2015, 13(6), 3422-3442; https://doi.org/10.3390/md13063422 - 29 May 2015
Cited by 150 | Viewed by 11654
Abstract
The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol [...] Read more.
The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone–methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process. Full article
(This article belongs to the Special Issue Marine Functional Food)
Show Figures

Graphical abstract

14 pages, 775 KiB  
Article
Extraction of Fucoxanthin from Raw Macroalgae excluding Drying and Cell Wall Disruption by Liquefied Dimethyl Ether
by Hideki Kanda, Yuichi Kamo, Siti Machmudah, Wahyudiono and Motonobu Goto
Mar. Drugs 2014, 12(5), 2383-2396; https://doi.org/10.3390/md12052383 - 30 Apr 2014
Cited by 94 | Viewed by 11415
Abstract
Macroalgae are one of potential sources for carotenoids, such as fucoxanthin, which are consumed by humans and animals. This carotenoid has been applied in both the pharmaceutical and food industries. In this study, extraction of fucoxanthin from wet brown seaweed Undaria pinnatifida (water [...] Read more.
Macroalgae are one of potential sources for carotenoids, such as fucoxanthin, which are consumed by humans and animals. This carotenoid has been applied in both the pharmaceutical and food industries. In this study, extraction of fucoxanthin from wet brown seaweed Undaria pinnatifida (water content was 93.2%) was carried out with a simple method using liquefied dimethyl ether (DME) as an extractant in semi-continuous flow-type system. The extraction temperature and absolute pressure were 25 °C and 0.59 MPa, respectively. The liquefied DME was passed through the extractor that filled by U. pinnatifida at different time intervals. The time of experiment was only 43 min. The amount of fucoxanthin could approach to 390 μg/g dry of wet U. pinnatifida when the amount of DME used was 286 g. Compared with ethanol Soxhlet and supercritical CO2 extraction, which includes drying and cell disruption, the result was quite high. Thus, DME extraction process appears to be a good method for fucoxanthin recovery from U. pinnatifida with improved yields. Full article
(This article belongs to the Special Issue Advances and New Perspectives in Marine Biotechnology)
Show Figures

Figure 1

Back to TopTop