Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = superconformal algebra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 421 KB  
Article
Supersymmetric Integrable Hamiltonian Systems, Conformal Lie Superalgebras K(1, N = 1, 2, 3), and Their Factorized Semi-Supersymmetric Generalizations
by Anatolij K. Prykarpatski, Volodymyr M. Dilnyi, Petro Ya. Pukach and Myroslava I. Vovk
Symmetry 2024, 16(11), 1441; https://doi.org/10.3390/sym16111441 - 30 Oct 2024
Cited by 2 | Viewed by 1083
Abstract
We successively reanalyzed modern Lie-algebraic approaches lying in the background of effective constructions of integrable super-Hamiltonian systems on functional N=1,2,3- supermanifolds, possessing rich supersymmetries and endowed with suitably related compatible Poisson structures. As an application, we [...] Read more.
We successively reanalyzed modern Lie-algebraic approaches lying in the background of effective constructions of integrable super-Hamiltonian systems on functional N=1,2,3- supermanifolds, possessing rich supersymmetries and endowed with suitably related compatible Poisson structures. As an application, we describe countable hierarchies of new nonlinear Lax-type integrable N=2,3-semi-supersymmetric dynamical systems and constructed their central extended superconformal Lie superalgebra K(1|3) and its finite-dimensional coadjoint orbits, generated by the related Casimir functionals. Moreover, we generalized these results subject to the suitably factorized super-pseudo-differential Lax-type representations and present the related super-Poisson brackets and compatible suitably factorized Hamiltonian superflows. As an interesting point, we succeeded in the algorithmic construction of integrable super-Hamiltonian factorized systems generated by Casimir invariants of the centrally extended super-pseudo-differential operator Lie superalgebras on the N=1,2,3-supercircle. Full article
(This article belongs to the Section Mathematics)
18 pages, 448 KB  
Article
𝒩 = 1 Curves on Generalized Coulomb Branches of Supersymmetric Gauge Theories
by Thomas Bourton, Elli Pomoni and Xinyu Zhang
Universe 2022, 8(2), 101; https://doi.org/10.3390/universe8020101 - 4 Feb 2022
Cited by 3 | Viewed by 2262
Abstract
We study the low energy effective dynamics of four-dimensional N=1 superconformal theories on their generalized Coulomb branch. The low energy effective gauge couplings are naturally encoded in algebraic curves X, which we derive for general values of the couplings and [...] Read more.
We study the low energy effective dynamics of four-dimensional N=1 superconformal theories on their generalized Coulomb branch. The low energy effective gauge couplings are naturally encoded in algebraic curves X, which we derive for general values of the couplings and mass deformations. We then recast these IR curves X to the UV or M-theory form C: the punctured Riemann surfaces on which the M5 branes are compactified giving the four-dimensional theories. We find that the UV curves C and their corresponding meromorphic differentials take the same form as those for their mother four-dimensional N=2 theories of class S. They have the same poles, and their residues are functions of all the exactly marginal couplings and the bare mass parameters which we can compute exactly. Full article
(This article belongs to the Collection Women Physicists in Astrophysics, Cosmology and Particle Physics)
Show Figures

Figure 1

9 pages, 2257 KB  
Article
Supersymmetric and Conformal Features of Hadron Physics
by Stanley J. Brodsky
Universe 2018, 4(11), 120; https://doi.org/10.3390/universe4110120 - 8 Nov 2018
Cited by 2 | Viewed by 3778
Abstract
The QCD Lagrangian is based on quark and gluonic fields—not squarks nor gluinos. However, one can show that its hadronic eigensolutions conform to a representation of superconformal algebra, reflecting the underlying conformal symmetry of chiral QCD. The eigensolutions of superconformal algebra provide a [...] Read more.
The QCD Lagrangian is based on quark and gluonic fields—not squarks nor gluinos. However, one can show that its hadronic eigensolutions conform to a representation of superconformal algebra, reflecting the underlying conformal symmetry of chiral QCD. The eigensolutions of superconformal algebra provide a unified Regge spectroscopy of meson, baryon, and tetraquarks of the same parity and twist as equal-mass members of the same 4-plet representation with a universal Regge slope. The predictions from light-front holography and superconformal algebra can also be extended to mesons, baryons, and tetraquarks with strange, charm and bottom quarks. The pion q q ¯ eigenstate has zero mass for m q = 0 . A key tool is the remarkable observation of de Alfaro, Fubini, and Furlan (dAFF) which shows how a mass scale can appear in the Hamiltonian and the equations of motion while retaining the conformal symmetry of the action. When one applies the dAFF procedure to chiral QCD, a mass scale κ appears which determines universal Regge slopes, hadron masses in the absence of the Higgs coupling. One also predicts the form of the nonperturbative QCD running coupling: α s ( Q 2 ) e Q 2 / 4 κ 2 , in agreement with the effective charge determined from measurements of the Bjorken sum rule. One also obtains viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions. The combination of conformal symmetry, light-front dynamics, its holographic mapping to AdS 5 space, and the dAFF procedure thus provide new insights, not only into the physics underlying color confinement, but also the nonperturbative QCD coupling and the QCD mass scale. Full article
Show Figures

Figure 1

27 pages, 341 KB  
Article
Higher Spin Superfield Interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices
by Ioseph L. Buchbinder, S. James Gates and Konstantinos Koutrolikos
Universe 2018, 4(1), 6; https://doi.org/10.3390/universe4010006 - 10 Jan 2018
Cited by 62 | Viewed by 3362
Abstract
We investigate cubic interactions between a chiral superfield and higher spin superfields corresponding to irreducible representations of the 4 D , N = 1 super-Poincaré algebra. We do this by demanding an invariance under the most general transformation, linear in the chiral superfield. [...] Read more.
We investigate cubic interactions between a chiral superfield and higher spin superfields corresponding to irreducible representations of the 4 D , N = 1 super-Poincaré algebra. We do this by demanding an invariance under the most general transformation, linear in the chiral superfield. Following Noether’s method we construct an infinite tower of higher spin supercurrent multiplets which are quadratic in the chiral superfield and include higher derivatives. The results are that a single, massless, chiral superfield can couple only to the half-integer spin supermultiplets ( s + 1 , s + 1 / 2 ) and for every value of spin there is an appropriate improvement term that reduces the supercurrent multiplet to a minimal multiplet which matches that of superconformal higher spins. On the other hand a single, massive, chiral superfield can couple only to higher spin supermultiplets of type ( 2 l + 2 , 2 l + 3 / 2 ) (only odd values of s, s = 2 l + 1 ) and there is no minimal multiplet. Furthermore, for the massless case we discuss the component level higher spin currents and provide explicit expressions for the integer and half-integer spin conserved currents together with a R-symmetry current. Full article
(This article belongs to the Special Issue Higher Spin Gauge Theories)
Back to TopTop