Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = super-spread wetting properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 17730 KiB  
Article
Copper Surface Treatment Method with Antibacterial Performance Using “Super-Spread Wetting” Properties
by Beomdeok Seo, Hideyuki Kanematsu, Masashi Nakamoto, Yoshitsugu Miyabayashi and Toshihiro Tanaka
Materials 2022, 15(1), 392; https://doi.org/10.3390/ma15010392 - 5 Jan 2022
Cited by 9 | Viewed by 3813
Abstract
In this work, a copper coating is developed on a carbon steel substrate by exploiting the superwetting properties of liquid copper. We characterize the surface morphology, chemical composition, roughness, wettability, ability to release a copper ion from surfaces, and antibacterial efficacy (against Escherichia [...] Read more.
In this work, a copper coating is developed on a carbon steel substrate by exploiting the superwetting properties of liquid copper. We characterize the surface morphology, chemical composition, roughness, wettability, ability to release a copper ion from surfaces, and antibacterial efficacy (against Escherichia coli and Staphylococcus aureus). The coating shows a dense microstructure and good adhesion, with thicknesses of approximately 20–40 µm. X-ray diffraction (XRD) analysis reveals that the coated surface structure is composed of Cu, Cu2O, and CuO. The surface roughness and contact angle measurements suggest that the copper coating is rougher and more hydrophobic than the substrate. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements reveal a dissolution of copper ions in chloride-containing environments. The antibacterial test shows that the copper coating achieves a 99.99% reduction of E. coli and S. aureus. This study suggests that the characteristics of the copper-coated surface, including the chemical composition, high surface roughness, good wettability, and ability for copper ion release, may result in surfaces with antibacterial properties. Full article
(This article belongs to the Special Issue Advanced Materials for Societal Implementation)
Show Figures

Figure 1

11 pages, 2434 KiB  
Article
Bio-Based Hotmelt Adhesives with Well-Adhesion in Water
by Xi Yu, Chuang Dong, Wei Zhuang, Dongjian Shi, Weifu Dong, Mingqing Chen and Daisaku Kaneko
Polymers 2021, 13(4), 666; https://doi.org/10.3390/polym13040666 - 23 Feb 2021
Cited by 7 | Viewed by 3958
Abstract
We suggest a simple idea of bio-based adhesives with strong adhesion even under water. The adhesives simply prepared via polycondensation of 3,4-dihydroxyhydrocinnamic acid (DHHCA) and lactic acid (LA) in one pot polymerization. Poly(DHHCA-co-LA) has a hyperbranched structure and demonstrated strong dry [...] Read more.
We suggest a simple idea of bio-based adhesives with strong adhesion even under water. The adhesives simply prepared via polycondensation of 3,4-dihydroxyhydrocinnamic acid (DHHCA) and lactic acid (LA) in one pot polymerization. Poly(DHHCA-co-LA) has a hyperbranched structure and demonstrated strong dry and wet adhesion strength on diverse material surfaces. We found that their adhesion strength depended on the concentration of DHHCA. Poly(DHHCA-co-LA) with the lowest concentration of DHHCA showed the highest adhesion strength in water with a value of 2.7 MPa between glasses, while with the highest concentration of DHHCA it exhibited the highest dry adhesion strength with a value of 3.5 MPa, which was comparable to commercial instant super glue. Compared to underwater glues reported previously, our adhesives were able to spread rapidly under water with a low viscosity and worked strongly. Poly(DHHCA-co-LA) also showed long-term stability and kept wet adhesion strength of 2.2 MPa after steeping in water for 1 month at room temperature (initial strength was 2.4 MPa). In this paper, Poly(DHHCA-co-LA) with strong dry and wet adhesion properties and long-term stability was demonstrated for various kinds of applications, especially for wet conditions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

9 pages, 3068 KiB  
Article
Joining of Metal to Ceramic Plate Using Super-Spread Wetting
by Jaebong Yeon, Michiru Yamamoto, Peiyuan Ni, Masashi Nakamoto and Toshihiro Tanaka
Metals 2020, 10(10), 1377; https://doi.org/10.3390/met10101377 - 15 Oct 2020
Cited by 5 | Viewed by 3666
Abstract
Ceramic-metal composites with novel performance are desirable materials; however, differences in their properties result in difficulties in joining. In this study, the joining of metal to ceramic is investigated. We recently succeeded in causing super-spread wetting on the surface fine crevice structures of [...] Read more.
Ceramic-metal composites with novel performance are desirable materials; however, differences in their properties result in difficulties in joining. In this study, the joining of metal to ceramic is investigated. We recently succeeded in causing super-spread wetting on the surface fine crevice structures of metal surfaces produced by both laser irradiation and reduction-sintering of oxide powders. In this work, joining copper onto an Al2O3 plate was achieved by taking advantage of super-spread wetting. Fe2O3 powder was first sintered under reducing conditions to produce a microstructure which can cause super-spread wetting of liquid metal on an Al2O3 plate. A powder-based surface fine crevice structure of metallic iron with high porosity was well-formed due to the bonding of the reduced metallic iron particles. This structure was joined on an Al2O3 plate with no cracking by the formation of an FeAl2O4 layer buffering the mismatch gap between the thermal expansion coefficients of iron and Al2O3. We successfully achieved metalizing of the Al2O3 surface with copper without interfacial cracks using super-spread wetting of liquid copper through the sintered metallic iron layer on the Al2O3 plate. Then, laser irradiation was conducted on the surface of the copper-metalized Al2O3 plate. A laser-irradiated surface fine crevice structure was successfully created on the copper-metalized Al2O3 plate. Moreover, it was confirmed that the super-spread wetting of liquid tin occurred on the laser-irradiated surface fine crevice structure, finally accomplishing the joining of a copper block and the copper-metalized Al2O3. Full article
(This article belongs to the Special Issue Metal-Ceramic and Metal-Metal Interactions and Joining)
Show Figures

Figure 1

Back to TopTop