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Abstract: In this work, a copper coating is developed on a carbon steel substrate by exploiting
the superwetting properties of liquid copper. We characterize the surface morphology, chemical
composition, roughness, wettability, ability to release a copper ion from surfaces, and antibacterial
efficacy (against Escherichia coli and Staphylococcus aureus). The coating shows a dense microstructure
and good adhesion, with thicknesses of approximately 20–40 µm. X-ray diffraction (XRD) analysis
reveals that the coated surface structure is composed of Cu, Cu2O, and CuO. The surface roughness
and contact angle measurements suggest that the copper coating is rougher and more hydrophobic
than the substrate. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) measure-
ments reveal a dissolution of copper ions in chloride-containing environments. The antibacterial
test shows that the copper coating achieves a 99.99% reduction of E. coli and S. aureus. This study
suggests that the characteristics of the copper-coated surface, including the chemical composition,
high surface roughness, good wettability, and ability for copper ion release, may result in surfaces
with antibacterial properties.

Keywords: antibacterial properties; coating; copper; fine crevice structure; super-spread wetting properties

1. Introduction

The Centers for Disease Control and Prevention reported that healthcare-associated
infections (HAIs) cause or contribute to 99,000 deaths and add approximately $40 billion to
healthcare coasts each year [1]. As a possible cause of infection, bacterial contamination on
the surfaces of materials, especially in hospitals and public places, is proposed as a serious
threat [2]. On surfaces, many types of bacteria can survive for long periods, with some
even able to survive for more than a month [2]. Various efforts, such as hand washing,
disinfection, and antibacterial surfaces, have been developed to control infection, but the
problem has not been resolved [2–4]. A recent trend in risk management of the transfer
of bacteria from surface to surface is the use of copper in the manufacture of public and
hospital materials [5,6]. Some of these studies reported that the use of copper alloys
in intensive care unit rooms can significantly reduce HAIs compared with a standard
room [5,7].

Although the antibacterial mechanism of the solid copper surface has yet to be clearly
understood, several studies have investigated the result of the so-called contact killing [8,9].
When bacteria are directly in contact with metallic copper, copper ions accumulate inside
the cell because the bacteria recognize the copper ions as essential nutrients [10,11]. The cell
and DNA are then damaged and destroyed by the depolarization effect and reactive oxygen
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species (ROS) [12]. Surface properties, including roughness, wetting behavior, and contact
angle, significantly influence contact killing [12–20]. Together with the contact-killing effect,
the direct release of copper ions from metallic copper plays a decisive role in the bacterial
killing process [21–23]. Copper ions prompt the generation of ROS and cause bacterial
cell damage or death. It is also reported that there are differences depending on the type
of copper oxide. The antibacterial performance can be further improved by applying a
copper oxide surface because of the extensive release of copper ions from the copper oxide
surface [23–25]. Based on these observations, the use of copper is a promising strategy to
prevent HAIs.

When applying copper to materials in public and hospital settings, it is the preferred
method to coat copper on an inexpensive metal such as carbon steel in consideration of the
economic aspects [26]. However, there are problems associated with the copper coating
process. The widely used copper-plating process uses cyanide ions, which can cause serious
environmental pollution problems [27,28]. Other methods, such as plasma treatment with
oxygen, chemical vapor deposition, and ammonia plasma, require complex equipment and
procedures [29–32]. Therefore, to widely apply the antibacterial properties of copper, a new
method to solve these problems is important.

In this study, for copper surface coating, the super-spread wettability properties
of liquid copper are exploited. The literature reports that liquid copper is not able to
wet a solid oxide [33,34]. However, our previous works have shown that liquid copper
unusually penetrates and spreads on a surface with fine crevice structures formed by
capillary action [35]. The resulting phenomenon, named “super-spread wetting”, caused
by the capillary characteristics of the liquid metal and metal surface with a fine crevice
structure, differs from an ordinary occurrence [36–38]. In addition, using the super-spread
wetting property, the liquid copper is able to flow to the desired target point [39]. Although
some research has been conducted to understand this unusual phenomenon, studies on the
coating technology have not been conducted [40,41].

We provide a new method of copper coating with antibacterial properties on carbon
steel using the super-spread wetting properties of liquid copper. In addition, our research
suggests a method for coating copper that does not use complex manufacturing equipment
and processes and does not emit pollutants. The surface characterizations, including
morphology, chemical composition, phase, roughness, wettability, and the ability for
a copper ion to be released from the surfaces, have been systematically investigated.
Furthermore, the antibacterial properties are determined by ISO 22196:2011 method against
Escherichia coli and Staphylococcus aureus. In this work, we will discuss the antibacterial
mechanism for copper-coated surfaces.

2. Materials and Methods
2.1. Materials and Fabrication of the Test Samples

The substrate was cut from JIS-SS400 carbon steel plate with the chemical composition:
C 0.148; Si 0.213; Mn 0.458; S 0.018; P 0.012 (wt.%), Fe balance. The specimens were
machined into rectangular shapes, with dimensions of 10 mm × 10 mm × 2 mm, then
sequentially ground by emery papers up to 1200 grit and degreased in acetone using an
ultrasonic bath. Copper powder (99 purity, Sigma Aldrich, St Louis, MO, USA) was applied
for the coating process.

Figure 1 shows the different steps involved with fabricating the test samples. First, a
fine structure was formed on the surface to allow liquid copper to spread on the surface.
Our previous research confirmed that surfaces with a fine crevice structure can be created
by laser irradiation [38]. As shown in Figure 1a, a continuous Nd: YAG laser (ML-7062A,
Miyachi Corporation, Tokyo, Japan) was used to fabricate the fine crevice structure with two
types of patterns: covering all (10 × 10 mm square) and 48% (0.8 mm × 9.9 mm × 6 pcs
rectangle arranged at intervals of 1.0 mm) of the substrate, respectively. Laser irradiation
was performed on the substrate positioned 110 mm under the scanning lens with an average
power of 30 W at a frequency of 6.0 kHz, a spot diameter of 0.1 mm, a pitch of 0.01 mm
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and a scan speed of 9.0 mm/s under air atmosphere. Then, the prepared substrate with a
crevice structure was fed with 6 mg/cm2 copper and heated to 1100 ◦C, which is slightly
above the melting point of copper, to coat it with liquid copper in an electric furnace (see
Figure 1b) [36]. The temperature profile for the coating process is shown in Figure 1c. To
prevent oxidation during the heating process, Ar gas (60 mL/min) and H2 gas (15 mL/min)
were supplied, and the oxygen partial pressure was maintained at approximately 10−3

atm in the furnace. After a prescribed heating time, the specimens were cooled in the
furnace at a rate of 400 ◦C per hour to 600 ◦C under an Ar gas environment and then
air-cooled. The cooling condition was determined by focusing on the formation of copper
and copper compounds with antibacterial effects by using a thermodynamic calculation
with the FactSage software (version 7.1).

Figure 1. Schematic diagram of the different steps of fabricating procedure: (a) formation of fine
crevice structure and pattern shape using Nd: YAG laser; (b) process for copper coating by super-
spread wetting properties; (c) heat temperature profile for the coating process.

2.2. Strains and Culture Conditions

We used two different bacterial strains to determine the antibacterial effect, Escherichia
coli (E. coli, ATCC 25922) and Staphylococcus aureus (S. aureus, ATCC12228), the most
frequently used gram-negative and gram-positive organisms, respectively. All the investi-
gations were conducted in Luria Broth (LB, Nacalai tesque, Kyoto, Japan) consisting of 10 g
of bactotrypton, 5 g of yeast extract and 10 g of NaCl per liter. All solutions were sterilized
by autoclaving at 120 ◦C for 15 min before use. Both bacteria were cultured in 10 mL of LB
broth on a swing bed at 35 ◦C overnight. This solution was then diluted in sterile LB broth
to 105 CFU/mL.

2.3. Surface Characterization

The surface morphology and composition were investigated using scanning electron
microscopy (SEM, Miniscope TM-1000, Hitachi, Japan) and energy-dispersive spectroscopy
(EDS, JSM-6500F, JEOL, Tokyo, Japan). The surface phase was analyzed with X-ray diffrac-
tion analysis (XRD, SmartLab, Rigaku, Tokyo, Japan) using CuKα radiation in the range of
2θ from 20◦–80◦. The surface roughness and profile were measured by three-dimensional
(3D) laser scanning microscopy (VK-9700, Keyence, Osaka, Japan) and analyzed with the
VK-H1XP software. Results for five random areas were presented as the average roughness
(Ra), peak-to-valley roughness (Rz) and root-mean-square roughness (Rq). The contact
angle measurement was used to characterize the wettability by LB broth. The contact
angle was measured at room temperature using the sessile drop method from a contact
angle meter (CA, DMo-501, Kyowa Interface Science, Saitama, Japan). The measurements
were repeated three times for each specimen. The “Standard test methods for measuring
adhesion by tape test (ASTM D3359-02)” were performed to investigate the adhesion of the
copper coating on the specimens [42].
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2.4. Anti-Bacterial Activity Test

We used a modified ISO 22196:2011 (Measurement of Antibacterial Activity on Plastics
and Other Non-Porous Surfaces) test to characterize the antibacterial properties of the
specimens [43,44]. Prior to the experiments, the specimens were sterilized with 75 vol.%
ethyl alcohol and UV-light for 30 min. The prepared bacterial suspension (16 µL) was
applied to the specimen surfaces. A piece of polymer film, 10 × 10 mm, sterilized with
70% ethanol and dried, was placed on the surface to spread the suspension and to reduce
evaporation. The samples were then incubated for 24 h at 35 ◦C. After the incubation,
the specimen and polymer film were vortexed for 1 min with 1 mL of sterilized water
containing Tween 80 (20 µL) to remove attached bacteria from the surfaces. The bacterial
solution was diluted with fresh LB broth by a factor of 10–104. Subsequently, 100 µL of
diluted solution was evenly distributed over the surface of the LB agar in petri dishes,
followed by incubation at 35 ◦C for 24 h. Afterwards, the numbers of bacterial colonies
were counted to determine the bacterial cell concentration. Each sample type was tested in
triplicate. Log reduction was determined by the following equation (Equation (1)) [45,46]:

Log reduction = log10
A
B

(1)

where A and B refer to the number of bacterial colonies on the control sample and test
sample, respectively, after a designated contact time.

2.5. Measurement of Copper Ion Release

The copper ion release from the coating was measured using inductively coupled
plasma-atomic emission spectrometry (ICP–AES, Optima 8300, Norwalk, Connecticut,
USA). The specimens were immersed in 100 mL of sterilized LB broth, and then, the
solution was extracted from samples after 1, 4, 8, and 24 h to analyze for copper release. The
copper ion concentration was quantified with a standard ICP ionic solution with different
concentrations (from 0.02 to 0.5 ppm) that was used to plot the calibration curve. The
element copper was analyzed using an emission wavelength of 325 nm.

3. Results
3.1. Characteristics of Copper Coating by Super-Wetting Properties
3.1.1. Surface Morphology and Cross-Sectional Analysis

Figure 2 indicates the scanning electron microscopy (SEM) images before and after
coating. The substrate had a surface with a smooth and even structure (Figure 2a). Our
previous work confirmed that laser irradiation melts the metal and causes swelling and
spattering, and as a result, the liquid metal accumulates and forms a fine crevice structure
(Figure 2b) [38]. Before the coating process, the fine crevice structure formed on all and 48%
of the substrate by laser irradiation (Figure 2c,d). After the coating process by the super-
spread wetting properties, the copper was coated on the surface (Figure 2e,f). It clearly
indicates that the coating film was formed only on the fine crevice structure fabricated by
laser irradiation (Figure 2f). This means that we are able to coat copper on the required
area through the process of modifying the surface.

Figure 3 shows the cross-sectional images and the energy-dispersive X-ray spec-
troscopy (EDS) results for copper coating by the superspreading properties. The cross-
sectional images reveal that the coating, with approximately 20–40 µm thickness and
homogeneous microstructure, was composed of a substrate outer layer. Furthermore, the
copper-coating surface had the highest adhesion strength grade of 5B (no detachment of
the squares of the lattice), according to ASTM D3359-02, as shown in Table 1 [42]. Further-
more, it clearly shows that copper was coated along a complex surface structure, as shown
in Figure 3e,f. This phenomenon results from liquid copper penetrating and spreading
through the complex fine crevice structure by capillary action [35,36]. These results provide
evidence that a coating can be controlled by the fine crevice surface structure and super-
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spread wetting properties. Furthermore, additional research is needed for the possibility of
controlling the coating thickness according to the surface structure and the copper supplied.
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3.1.2. Phase Analysis

Figure 4 shows the XRD patterns of the substrate and the copper-coated specimens
by the super-spread wetting properties in the range of 20◦–80◦. According to the XRD
analysis results of the all- and 48%-copper-coated surfaces, diffraction peaks were observed
at 2θ values of 43.39◦, 50.49◦, and 74.18◦, which corresponded to the (111), (200) and (200)
planes of the metallic Cu (JCPDS No. 04-0836). In addition to the peaks of metallic Cu, the
diffraction peaks at 36.4◦ and 42.3◦ corresponded to the (111) and (200) planes of the Cu2O
(JCPDS No. 05-0667), and those at 33.17◦, 35.4◦, and 38.7◦ corresponded to (100), (002), and
(111) planes of CuO (JCPDS No. 48-1548). Of course, peaks from the crystal phases of α-Fe
and Fe3O4 related to the substrate also appeared. These results indicate that the substrate
with a surface crevice structure was coated with Cu by the super-spread wetting properties.
In addition, as predicted by the thermodynamics calculation, the surface structure formed
from Cu to Cu, Cu2O and CuO by oxidation during the fabrication and cooling processes.

Figure 4. XRD patterns for specimens.

3.1.3. Measurement of Surface Roughness and Wettability

To further identify the surface topology after the coating process by the super-spread
wetting properties, the surface roughness was assessed by a 3D laser scanning microscope,
as shown in Figure 5. The substrate showed a homogeneous and regular topology, with
low peaks (green) and low valleys (yellow) (Figure 5a,c). In contrast, the mountains (red)
and valleys (blue) identified on the coated surface revealed a heterogeneous and irregular
topology (Figure 5b,d). Table 2 offers, in addition, some objective parameters to determine
the surface characteristics of the samples, i.e., average roughness (Ra), peak-to-valley
roughness (Rz) and root-mean-square roughness (Rq). Based on statistical analysis, the
difference before and after the coating process was obvious. For example, Ra was 0.24 and
6.35 µm before and after coating, respectively. The Rz and Rq parameters, reflecting the
local height variations in a surface area, were 9.55 and 0.33 µm before and 80.57 and 7.89 µm
after coating, respectively. This result is caused by the super-spread wetting properties of
liquid copper through capillary action into the surface with crevice structure fabricated by
a laser.

Table 2. Average roughness (Ra), peak-to-valley roughness (Rz) and root-mean-square roughness
(Rq) determined by 3D microscope.

Substrate Coated Surface

Ra (µm) 0.24 ± 0.03 6.35 ± 0.16
Rz (µm) 9.55 ± 2.35 80.57 ± 3.10
Rq (µm) 0.33 ± 0.03 7.89 ± 0.18
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Contact angle measurements characterized the degree of wettability for the specimens
in the LB broth, and representative images and average values are shown in Figure 6. The
substrate before the coating process had a contact angle of 61.3◦ (Figure 6a). After the
coating process, the specimen became more wettable, which was indicated by a reduction
of the contact angle to 56.5◦ (Figure 6b). Therefore, the coating process by the super- spread
wetting properties led to changes in the wettability (Figure 6c).

Figure 6. Representative images and average values for contact angle in Luria broth medium;
substrate (a) coated surface (b) average values for the contact angle (c).
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3.2. Anti-Bacterial Nature of the Cu Coating by Super-Spread Wetting Properties

The antibacterial nature of the specimens coated by the super-spread wetting prop-
erties was evaluated by ISO 22196:2011 against E. coli and S. aureus. Figure 7a shows
representative images of bacteria colonies after incubation for E. coli and S. aureus of the
solution collected after contact with the specimen for 24 h. Large amounts of bacterial
colonies appeared on the substrate (control) for both types of bacteria. In contrast, in the
dish cases, for the all copper-coated samples that were fabricated with the super-spread
properties, there were no colonies for both types of bacteria and a similar aspect as the
copper plate was even shown. As shown in Figure 7b, the number of bacteria inoculated
on the copper-coated surface was reduced to less than 10 CFU/mL after a 24-h incubation
period. Therefore, the log reduction value for all copper-coated samples against E. coli and
S. aureus was 4.08 and 4.08, respectively, by Equation (1) (see Figure 7c). The copper-coated
surface supported less than 0.01% of both types of bacterial grown on the copper coating
by super-spread wetting properties. These results demonstrate that the copper-coated
specimens by super-spread wettability have antibacterial properties to both gram-positive
and gram-negative bacteria. In addition, on the 48%-copper-coated samples, only a few
bacterial colonies were found. The number of bacteria inoculated on the 48%-copper-coated
surface was reduced to (2.1 ± 0.1) × 103 CFU/mL of E. coli and (2.6 ± 0.1) × 103 CFU/mL
of S. aureus after a 24-h incubation period (see Figure 7b).
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3.3. Copper-Ion Release

Figure 8 summarizes the release of copper ions from the all- and 48%-copper-coated
samples versus exposure time in uninoculated LB broth. The copper ion concentration
for the all-copper-coated sample increased with the extension of immersion duration time.
However, copper emission from the 48%-copper-coated sample proceeded rapidly in the
early immersion stage but was relatively slower over time. This was proposed to arise from
the difference of the chemical state depending on the exposed area of the copper and the
oxide type. After 24 h, the concentration of copper ions was 295 ppb and 100 ppb for the
all- and 48%-copper-coated samples, respectively. These data clearly showed that copper
ions were released from both specimens.

Figure 8. The variation in copper ion release from all-around and 48%-copper-coated in un-inoculated
Luria broth medium vs. exposure time.

4. Discussion

Figure 9 presents why the copper coating with the super-spread wetting property is
antibacterial, based on the experimental results so far. The coated specimen has an irregular
surface structure because liquid copper is wetted to the crevice structure by capillary
action using the superwetting property. Several studies found that these micro-sized rough
surfaces enhance bacterial adhesion to the surface, described as an anchoring effect [20,47].
Bacteria would contact the rough surface easily composed of copper and copper oxides
that have antibacterial performance formed through the coating process. Additionally,
the coated surfaces are 56.5◦ through contact angle measurement, which means that the
surface has a hydrophilic character with good wettability. It is known through many
studies that when the surface has hydrophilic properties, bacteria can easily attach to the
surface [15,16]. These wetting properties can further improve the antibacterial properties of
copper compounds known as contact-killing. The influx of copper ions into the cytoplasm
would be the key to antibacterial performance in contact-killing [48,49]. In addition, the
antimicrobial efficacy of a copper coating is dependent on the number of copper ions
released from the surface to the electrolyte. The LB broth used in this study contains
chloride, and copper has the property of being dissolved in the form of complex ions in
such an environment [50–52]. This phenomenon is related to the breaking of the equilibrium
state of the copper surface into a polarized state by chloride. The elution phenomenon of
copper from the coating surface can be explained as follows. When the coated surface is
exposed to these environments, transitional products (CuClads) are formed according to
the interaction between copper atoms on the coating surface and Cl. Because this product
is not stable, it combines with more Cl− ions and oxidizes into soluble oxidation products
CuCl2−, as shown in Equations (2)–(4) [50–52].

Cu+→ CuCl−ads (2)
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CuCl−ads+Cl− → CuCl−2 (3)

Cu + 2Cl− → CuCl−2 + 2e− (4)

Figure 9. Schematic of the antimicrobial activity mechanism of copper coating specimens with
super-spread wetting properties.

It has been reported that when the copper ion concentration in the immersion solution
is higher than 0.036 mg/L, the antibacterial rate is more than 99% [21,22]. Our results also
indicate that the copper ions concentration in the immersion solution is more than 295 and
110 ppb in the all- and 48%-copper-coated specimens, respectively. For that reason, it is
considered that antibacterial properties are shown not only in the specimen coated with
copper over the entire area, but also in the specimen in which the base material is partially
exposed. The toxicity of copper ions is still unclear but is usually owing to their ability to
catalyze Fenton chemistry according to Equation (5) [8,53]. Combined with Equation (6),
these reactions can provide a reactive oxygen species that can destroy bacterial cells [53].

Cu++H2O2 → Cu2+ + OH− + OH• (5)

H2O2 + OH• → H2O + O2
− + H+ (6)

5. Conclusions

Using the superwetting property of liquid copper, we have coated copper on carbon
steel surfaces and also only on a desired area. In addition, we have discussed the properties
of the coating surface and the correlation between antibacterial properties. The results
demonstrated that a coating without visible cracks or voids between two metals can be
manufactured using the superwetting property of liquid copper. In addition, we confirm
that coating using the superwetting property has excellent antibacterial performance.
Additionally, it is also interesting that it has excellent antibacterial performance even when
coated over only 48% of the area. It is considered that the properties of the copper coating,
which include the chemical composition of the surface, high surface roughness, good
wettability, and ability for copper ion release, influence the antibacterial properties. Our
research presents a new method for copper coating with antibacterial properties in a simple
to produce and environmentally friendly way. In addition, we expect that this study can be
applied to various base materials requiring antibacterial properties.
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50. Otmačić, H.; Telegdi, J.; Papp, K.; Stupnišek-Lisac, E. Protective Properties of an Inhibitor Layer Formed on Copper in Neutral
Chloride Solution. J. Appl. Electrochem. 2004, 34, 545–550. [CrossRef]

http://doi.org/10.1016/j.electacta.2015.04.001
http://doi.org/10.1177/0040517510397577
http://doi.org/10.1177/1528083706060785
http://doi.org/10.1021/acsami.9b17815
http://www.ncbi.nlm.nih.gov/pubmed/31880421
http://doi.org/10.2355/isijinternational.ISIJINT-2019-747
http://doi.org/10.1016/j.jhazmat.2008.06.051
http://doi.org/10.1186/2191-0855-3-53
http://www.ncbi.nlm.nih.gov/pubmed/24007899
http://doi.org/10.3390/met11050711
http://doi.org/10.1016/j.jmst.2020.11.038
http://doi.org/10.1016/j.jallcom.2018.02.289
http://doi.org/10.1007/s11663-019-01578-0
http://doi.org/10.2320/matertrans.46.3008
http://doi.org/10.2320/matertrans.M2015301
http://doi.org/10.2320/matertrans.MRA2007094
http://doi.org/10.2320/matertrans.MT-M2020293
http://doi.org/10.2320/matertrans.M2017115
http://doi.org/10.2320/matertrans.M2015428
http://doi.org/10.2320/matertrans.M2018073
http://doi.org/10.1016/j.surfcoat.2012.05.102
http://doi.org/10.1016/j.msec.2009.09.015
http://doi.org/10.1016/j.jhazmat.2013.05.025
http://www.ncbi.nlm.nih.gov/pubmed/23770490
http://doi.org/10.1016/j.biomaterials.2009.09.081
http://doi.org/10.1021/es903739f
http://www.ncbi.nlm.nih.gov/pubmed/20356037
http://doi.org/10.1021/la404091z
http://doi.org/10.1023/B:JACH.0000021873.30314.eb


Materials 2022, 15, 392 13 of 13

51. Sherif, E.M.; Park, S.-M. 2-Amino-5-Ethyl-1, 3, 4-Thiadiazole as a Corrosion Inhibitor for Copper in 3.0% NaCl Solutions. Corros.
Sci. 2006, 48, 4065–4079. [CrossRef]

52. Rui, D.; Li, X.; Jia, W.; Li, W.; Xiao, W.; Gui, T. Releasing Kinetics of Dissolved Copper and Antifouling Mechanism of Cold
Sprayed Copper Composite Coatings for Submarine Screen Doors of Ships. J. Alloys Compd. 2018, 763, 525–537. [CrossRef]

53. Van De Guchte, M.; Serror, P.; Chervaux, C.; Smokvina, T.; Ehrlich, S.D.; Maguin, E. Stress Responses in Lactic Acid Bacteria.
Antonie Van Leeuwenhoek 2002, 82, 187–216. [CrossRef]

http://doi.org/10.1016/j.corsci.2006.03.011
http://doi.org/10.1016/j.jallcom.2018.05.355
http://doi.org/10.1023/A:1020631532202

	Introduction 
	Materials and Methods 
	Materials and Fabrication of the Test Samples 
	Strains and Culture Conditions 
	Surface Characterization 
	Anti-Bacterial Activity Test 
	Measurement of Copper Ion Release 

	Results 
	Characteristics of Copper Coating by Super-Wetting Properties 
	Surface Morphology and Cross-Sectional Analysis 
	Phase Analysis 
	Measurement of Surface Roughness and Wettability 

	Anti-Bacterial Nature of the Cu Coating by Super-Spread Wetting Properties 
	Copper-Ion Release 

	Discussion 
	Conclusions 
	References

